

FINAL EXAMINATION

MATH 201

January 29, 2005; 3:00-5:00 P.M.

Name:

Signature:

Student number:

Section number (Encircle): 17

18

19

20

Instructors (Encircle): Dr. H. Yamani Mrs. M. Jurdak Prof. A. Lyzzaik

Instructions:

• No calculators are allowed.

• There are two types of questions:

PART I consists of four work-out problems. Give a detailed solution for each of these problems.

PART II consists of twelve multiple-choice questions each with exactly one correct answer. Circle the appropriate answer for each of these problems.

Grading policy:

- \bullet 10 points for each problem of PART I.
- \bullet 5 points for each problem of PART II.
- \bullet 0 point for no, wrong, or more than one answer of PART II.

GRADE OF PART I/40:

GRADE OF PART II/60:

TOTAL GRADE/100:

Part I(1). Use the change of variables u=x-y and v=x+y to evaluate the integral

$$\iint_R (x-y)^2 \cos^2(x+y) \ dx \ dy$$

over the square region R bounded by the lines $x-y=1,\ x-y=-1,$ $x+y=1,\ x+y=3.$

 ${f Part}$ I(2). Find the absolute maximum and minimum values of the function

$$f(x,y) = 2x^2 - xy + y^2 - 7x$$

on the square region $R = \{(x, y) : 0 \le x, y \le 3\}.$

AJERICAN CNIVERSITY
LUBRARY
OF BEHRET

Part I(3). Find the volume of the "ice cream cone" C bounded by the cone $\phi=\pi/6$ and the sphere $\rho=2a\cos\phi$ of radius a and tangent to the xy-plane at the origin.

AMERICAN UNIVERSITA LIBRARY OF BEIRCI Part I(4). Use Lagrange multipliers to find the point on the plane 2x + 3y + 4z = 12 at which the function $f(x, y, z) = 4x^2 + y^2 + 5z^2$ has its least value.

LIBRARY
OF BEIRCY

LIBRARY OF BEJRUT

Part II

Part II(1). If
$$f(x,y) = \frac{x^4 + y^2}{x^4 + x^2y + y^2}$$
 for $(x,y) \neq (0,0)$ and $f(0,0) = 0$, then

- (a) f is continuous at (0,0).
- (b) $\lim_{(x,y)\to(0,0)} f(x,y) = 1$.
- (c) $\lim_{(x,y)\to(0,0)} f(x,y)$ does not exist.
- (d) $\lim_{(x,y)\to(0,0)} f(x,y) = 2/3$.
- (e) None of the above.

Part II(2). The Maclaurin series of the integral

$$\int_0^x \sqrt{1+t^3} \, dt \quad \text{is}$$

(a)
$$\sum_{n=0}^{\infty} \frac{(1/2)(1/2-1)(1/2-2)\cdots(1/2-n+1)}{(3n+1)! n} x^{3n+1}$$
.

(b)
$$\sum_{n=0}^{\infty} \frac{(1/2)(1/2-1)(1/2-2)\cdots(1/2-n+1)}{n!(3n+1)} x^{3n+1}$$
.

(c)
$$\sum_{n=0}^{\infty} \frac{(1/2)(1/2-1)(1/2-2)\cdots(1/2-n+1)}{(3n+1)!} x^{3n+1}$$
.

(d)
$$\sum_{n=0}^{\infty} \frac{(1/2)(1/2-1)(1/2-2)\cdots(1/2-n+1)}{(3n+1)} x^{3n+1}$$
.

(e) None of the above.

Part II(3). The series

$$\sum_{n=2}^{\infty} \frac{(-1)^n}{\sqrt{n} (\ln n)^{10}}$$

- (a) converges absolutely.
- (b) converges conditionally.
- (c) diverges.
- (d) converges conditionally and absolutely.
- (e) None of the above.

Part II(4). The value of the integral

$$\int_0^1 \int_y^{\sqrt{y}} e^{y/x} dx dy \text{ is}$$

- (a) -1 + e/2.
- (b) -1 + e.
- (c) -1 + e/4.
- (d) -1 + e/3.
- (e) None of the above.

Part II(5). The interval of convergence of the power series

$$\sum_{n=1}^{\infty} (-1)^n \frac{(x-2)^n}{n4^n}$$
 is

- (a) [-2, 6].
- (b)]-2,6[.
- (c) [-2, 6].
- (d)]-2,6].
- (e) None of the above.

Part II(6). The value of the double integral

$$\int_0^1 \int_0^{\sqrt{1-y^2}} \frac{1}{1+x^2+y^2} \, dx \, dy \quad \text{is}$$

- (a) $(\pi \ln 2)/2$.
- (b) $\pi \ln 2$.
- (c) $(\pi \ln 2)/4$.
- (d) $(\pi \ln 2)/3$.
- (e) None of the above.

Part II(7). The polynomial that approximates the function

AMERICAN ENVIRENCE -LIBRARY OF BEIRUT

$$F(x) = \int_0^x \frac{\sin t}{t} \, dt$$

throughout the interval [0, 1/2] with an error of magnitude less than 10^{-3} is

- (a) $x x^3/12$.
- (b) $x x^3/6$.
- (c) $x x^3/18$.
- (d) $x x^3/24$.
- (e) None of the above.

Part II(8). The series $\sum_{n=1}^{\infty} a_n$ converges if

- (a) $a_n = 1/n^{\ln 2}$.
- (b) $a_n = (1/n) \ln(1 + 1/n)$.
- (c) $a_n < b_n$ and the series $\sum_{n=1}^{\infty} b_n$ converges.
- $(d) a_n = n \sin(1/n).$
- (e) $\lim_{n\to\infty} \sqrt[n]{|a_n|} \ge 1$.

Part II(9). Parametric equations for the line tangent to the curve of intersection of the surfaces xyz = 1 and $x^2 + 2y^2 + 3z^2 = 6$ at the point P(1, 1, 1) are

(a)
$$x = 1 + t$$
, $y = 1 + 2t$, $z = 1 + t$, $-\infty < t < \infty$.

(b)
$$x = 1 - t$$
, $y = 1 - 2t$, $z = 1 + t$, $-\infty < t < \infty$.

(c)
$$x = 1 + t$$
, $y = 1 - 2t$, $z = 1 - t$, $-\infty < t < \infty$.

(d)
$$x = 1 + t$$
, $y = 1 - 2t$, $z = 1 + t$, $-\infty < t < \infty$.

(e) None of the above.

LIBRARY
OF BEIRUS

Part II(10). A triple integral in cylindrical coordinates for the volume of the solid cut out from the sphere $x^2 + y^2 + z^2 = 4$ by the cylinder $x^2 + y^2 = 2y$ is

(a)
$$\int_0^{\pi} \int_0^{2\cos\theta} \int_{-\sqrt{4-r^2}}^{\sqrt{4-r^2}} r \, dz \, dr \, d\theta$$
.

(b)
$$\int_0^{\pi} \int_0^{2\sin\theta} \int_{-\sqrt{4-r^2}}^{\sqrt{4-r^2}} r \, dz \, dr \, d\theta$$
.

(c)
$$\int_0^{\pi/2} \int_0^{2\sin\theta} \int_{-\sqrt{4-r^2}}^{\sqrt{4-r^2}} r \, dz \, dr \, d\theta$$
.

(d)
$$\int_0^{\pi} \int_0^{2\sin\theta} \int_0^{\sqrt{4-r^2}} r \ dz \ dr \ d\theta$$
.

(e) None of the above.

Part II(11). By using Green's theorem, the value of the line integral

$$\oint_C (x+y) \ dx + (y+x^2) \ dy,$$

where C is the positively-directed boundary of the region bounded by the circles $x^2 + y^2 = 1$ and $x^2 + y^2 = 4$, is

- (a) $-\pi$.
- (b) 0.
- (c) -3π .
- (d) -2π .
- (e) None of the above.

Part II(12). The only one TRUE statement of the following is

- (a) The field $(y \sin z)\mathbf{i} + (x \sin z)\mathbf{j} + (xy \cos z)\mathbf{k}$ has potential function $xy \sin z \cos z$.
 - (b) The field $(e^x \cos y) \mathbf{i} + (e^x \sin y) \mathbf{j}$ is conservative.
 - (c) The differential $3x^2 dx + 2xy^2 dy$ is exact.
 - (d) The value of the line integral $\int_{(2,0,1/2)}^{(0,2,1)} y \, dx + x \, dy + 4 \, dz$ is 2.
 - (e) If C is a simple closed curve, then $\oint_C y \ dx + x \ dy \neq 0$.