4,1

4.1 The velocity field of a flow is given by V=
(52 — 3 + (x + 4)] + 4yk ft/s, where x, y, and z are in feet.
Determine the fluid speed at the origin (x = y = z = 0) and on
the x axis (y = z = 0).

Uu=52z -3 , /;/*:X-I-L/l w'-.—:l/)/

Thus, atf the origin u=-3, =%, w=0
sothat B

V=u* r* +wr* = J-3)2 442 = 5 fl/s
Similarly, on the x axis w=-3, pe X+4, wr=0
so that _ _
V:/uzm;z e = /(—3)2+(X+‘/) = [X*+8x 25 H_/f, where X~ £+

4




4.2

42 A flow can be visualized by plotting the velocity
field as velocity vectors at representative locations in the
flow as shown in Video V4,1 and Fig. E4.1. Consider the
velocity field given in polar coordinates by v, = —10/r
and vy = 10/r. This flow approximates a fluid swirling into
a sink as shown in Fig. P4.2. Plot the velocity field at
locations given by r = 1, 2, and 3 with = 0, 30, 60, and
90 deg.

With iy =-10/r and rg; =10/r then

V= ~/n/,a‘+/vgz = ,/(*/o/r)2 +(10/r)* = -'-ﬁ’f;#
The angle & between the radial direction and
the velocily vector js given by

7 _ Me _ l0/r -
fan & = myrllierary /

Thus, = #5° for any ré
(.. the velocily vector is alway oriented #5° relative o radial lines)

)3/ =60
Note: Vs
independent

of 6.

V=7.07 atr=2

Verd st atre| V=47 af r=3

4,

0




7.3

43  The velocity field of a flow is given by What is the angle between the velocity vector and

V = 20y/(x* + y)24 —20x/(x? + y))2j fils, the x axis at points (x, y) = (5, 0), (5, 5), and
‘where x and y are in feet. Determine the fluid (0, 5)? 4
speed at points along the x axis; along the y axis._ -
20y - 20x
U= i V 2=
(X2+ yl)/z J (xz + ),z) 2

Thus, V =Ju*+ sz or

40o0x? +#00y* 2 ~
V=[ (x2+y‘)y“] =208 for ary ¥,

Also, ~20x Y |
fqn 9 _ \ _ (Xz +y2)!‘§. n_zﬁ‘f% (5)5)
=Y . __(x 0 ‘
or ‘ (x=;:2 : &) % %) \20 &
tan6 = - -;7(-
| 5,
Thus, for (x,y) =(s,0) 1 (Ha) X
tanb=-00 or O=-90° 1203—
. v
for (x,y) =(5,5) :e \v
tan 6=~ or @=-#5° 4
for (%,y)=(0,5)

tanf=0 or §=0°




7.7

4.4 The components of a velocity field are given by u = x + y,
v = xy® + 16, and w = 0. Determine the location of any stag-
nation points (V = 0) in the flow field.

V=i +ar v =y stxy*si6? =0
or
U=X+y=0 so that X=-y

an
/u*d—-= Xy3+/6 =0 so Hhat Xy3=-/6

Hence, (-y)y’=-16, or y=2
Therefore, V=0 at x=-2 y=2

———— e,

4




4.5

4.5 The x and y components of velocity for a two-dimensional
flow are u = 9y ft/s and v = 3 fi/s, where x is in feet. Deter-
mine the equation for the streamlines and graph representative
streamlines in the upper half plane.

u=9y* and =3 so that the streamlines are given by
d 3 -

2%:: ,/LI‘.C; 75 O §3y‘dy-f/x

T/ms) y”’;: XtC, where C is a constant

Representative streamlines corresponding to different valves of C
are shown below. Mole : Since nr=3>0 1he flow is in the direction
indicated.

y
3
25 c=18
//// et
o c=J4
-2 ///C 7
bt -4
/ L
— -
//(.5 ‘// ' Cc==2
// e
A Zdinyss
/ 05 / /
/ / o /
-8 ) -2 0 2 4 6
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4.6  Show that the streamlines for a flow whose |

velocity components are u = ¢(x? — y?) andv =
—2cxy, where c is a constant, are given by the§
equation x’y — y*/3 = constant. At which point|

(points) is the flow parallel to the y axis? At which |
point (points) is the fluid stationary? |

U=c(x*-y?) , V==2cxy |
Streamlines given by y=f(x) are such that % =
Consfiz/er the function Xz‘y - & =copnst | O
Note: I is not easy to write this 3):10/[0/7}} as y=fkx)
S | However, we can differentiate Eg. () o give

2Xydx +x*dy - y’dy =0 or

(x*~y*)dy +2xy dx=0
Thus, the lines in the x-y plane given by E5.0) havs a slope

@ = Gy o T eonstanl o, G - i

Ge. the function X% »-g’f =const. represents the stresnlinss
- of the given flow. | B

| The flow /.s parallel 1o the x-axis when gf=0 ,orv=0.
This occors when erfher X=0 op y=0 | ze, the X-axis or

| o the y-axis

or u=o.

o

n

Y
o

The flow is para//el fo the y-axis when %— =00
This occors whep X=12 y

J

The flvid has zero ve/écbﬁz al x=y =0
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4.7 A velocity field is given by V = x{ + x(x — 1)(y + 1)],
where u and v are in ft/s and x and y are in feet. Plot the stream-
line that passes through x = Qand y = 0. Compare this stream-
line with the streakline through the origin.

U=X-, v=X(x-1D(y+1) where the streamlines are obiained
)Z"om

by -V _ X(x=D(y+l) _ ¢,_

¥ =45 (x-1)(y+1)

r ny%’%T "—:((X -dx  which when /hfegrafed 9/1/&:

In(y+1) =zx*-Xx +¢ , where C is a constant (1)

For {he stream)ine that passes throogh Hhe origin X=y<=0 the
valve of Cis found from Eq. (D as

In(l)=C , or C=0
J (—2’:)(2—)()
Thus, Inlyt) =4x2-x or y=e -

/

This streamline is plotted below.

|
/
/

-
y 15 \\ /
BN /

0

I

-1 0 1 2 3
X

Note: The streamline is symmetrical about its low point
of X=/, y=-0.392, A} x=y=0 the velocity is O.

For X<0, u<0 and for x>0, u>0. Thus the flvid
flows from the origin (x=y =0,

Since the flow is steady, streaklines are H)e same_as sir, QWL@ |




4.8

4.8 Water flows from a rotating lawn sprinkler as shown in
Video V4.6 and Figure P4.8. The end of the sprinkler arm moves
with a speed of wR, where w = 10 rad/s is the angular velocity
of the sprinkler arm and R = (.5 ft is its radius. The water exits
the nozzle with a speed of V = 10 ft/s relative to the rotating
arm. Gravity and the interaction between the air and the water are
negligible. (a) Show that the pathlines for this flow are straight ra-
dial lines. Hint: Consider the direction of flow (relative to the sta-
tionary ground) as the water leaves the sprinkler arm. (b) Show
that at any given instant the stream of water that came from the
sprinkler forms an arc given by r = R + (V,/w), where the

m FIGURE P4.8

(a) Water leaves the nozzle with a velocify of V=10fi/s af an angle of 30°

relalive fo the radjal direction — for an ohserver riding on the sprinkler arm.
This is the relative velocity. As shown in fhe sketch , 1he sprinkler arm has
a c:%cumfipenaml velocity of Rw=0.5ft(jorad/s)=5fl/s, The ahsolvfe
velocity, V,,, as observed by a persm standing on the lawn is the vector
sum of relative velocity and fhe nozzle velocity.

From the geomeiry of the figure :

n3d -5
{ 0( — 10 sin _
an ]0 cos30°

That s o =0

(.e., the absolvte wafer
velocity is in the radial
direction. Since there is
no force ,acﬁﬂy on the water
afler it leaves, the water particles

continve fo move in the rodial direction.
Thus, the pathlines are straight radial lines.

Va .
i 10sin30-5
o

10 cos30°

(b) 7he shape of Hhe water stream at a given instant ( ieq “snap shot” of
the water) can be oblained as follows. Consider the wafer stream emanating
from the end of the nozzle at r=R and 9=0dt 4jme =0

(con't)

4-8&




4.8

(con't)

A particle inthis stream that left from Hhe nozzle 1 seconds ago did
so when the nozzle was af 0= wt. Since

20 <0
the particles in straight, radial paths wifh gt =0 e

speea/ % (seepam‘ (a))) 7%'.‘9/0 a/v//‘a/e ’3 /j f seconds agqo
at a distance of r= R-H%{ from 4he -

origin. ~ é/\enuf A i
Thus, the stream shape js / w |
r=R +\éf and 6=wt , or b}/ e/iminaf:hgi
r=R+ (%‘;—)9
For the gé'Veh data with V= V cos30' =(10 £ ) coc 30" = 8,45 £ (see part@)
and W =10rad/ts Hhis becomes ,

r=0.5+0.8660, where r~ff apd 9~rad.
This stream shage is plotled below.
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“4.9  Consider a ball thrown with initial speed V, at an angle

| of 6 as shown in Fig. P4.9a. As discussed in beginning physics,
if friction is negligible the path that the ball takes is given by
y = (tan 6)x — [g/(2 V;*cos® 6))x?

Thatis,y = c;x + c,x?, where ¢; and c, are constants. The path

is a parabola. The pathline for a stream of water leaving a small  ~

nozzle is shown in Fig. P4.9b and Videco V4.3, The coordinates }
for this water stream are given in the following table. (a) Use

the given data to determine appropriate values for ciand c;in

the above equation and, thus, show that these water particles
also follow a parabolic pathline. (b) Use your values of ¢, and

¢, to determine the speed of the water, V, leaving the nozzle. -

el
x, in. y, in.
0 0
0.25 0.13
0.50 0.16
0.75 0.13
1.0 0.00
1.25 —-0.20
1.50 -0.53
1.75 -0.90

2.00

/)n EXCEL f-P/"oyrf}a/n ‘Wa,s"" wed to plof the x-y da |
1o fit a second order corve #y the data. The rew/i:f are shoun 6@/0144‘ -

(a)

(b)

M FIGURE P4.9

t and

0.04

y vs x for Water Stream

0.02

0 Bhae

-0.02 N

~ -0.04

-0.06

0.08 y = -8.4987x* + 0.71115x

-0.1

-0.12 +

0 0.05 0.1
x, ft

0.15

0.2

It

C, = -‘8’ 4‘?&7 | 2%;:6“;9 -

This, with y=GX+6x" if follows fhat
~{c,«==~ 0.7115 =tn@ or 6 = 35, ,gf ;

32.2

z.._»'"ﬁ — o

| 77)11.5; | Vo=/59ét




4.10

4,10 The x and y components of a velocity field are given
by u = x’ and v = ~x)”. Determine the equation for the
streamlines of this flow and compare with those in Example
4.2. Is the flow in this problem the same as that in Example
4.27 Explain.

Streamlines are qiven l)y % .-_‘-Zl{- = Xy _ ._ X

‘ . . x2 3
or Ay . _ f'kﬂi which can be infeqrated as: 4

Yy
.(%Z = —j%{?& M”"} Iny = ’/’7)’ +E, Where € is dcmﬂlan{,
Thes, Xy=C

Note: These sireonlines are the same shape (same “flow patters)
as in Example 42 — but the velocity fields are different

However, the ratias 2% are the same
2

Y__ Xy __Y
[7 xzy" X

d
Ve

-

“T (X

%-11
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4.11 A flow in the x—y plane is given by the
following velocity field: ¥ = 3 and v = 6 m/s for
0<t<20s;u= ~4andv = Om/s for 20 <
t <40 s. Dye is released at the origin (x = y =
0) for t = 0. (a) Draw the pathline at r = 30 s
for two particles that were released from the or-
igin—one released at 1 = 0 and the other released
at t+ = 20 s. (b) On the same graph draw the
streamlines at times f = 10s and t = 30 s.

(@) For the parficle released at 1=0 , u=3% gnd v=6%
for O<t<20s , Dw'mg f/?/.r ‘hme ‘//)e flow is sleady and
the pathline has as/omyz wwwww =2 At £=0, x=y-0
and at t=20 | x =(34£)(20s) = 50//; qm/ y= (52"1)(205) =/20m

For 20<t<30 | y=-44 aﬂa/ v=0, sothal the flow is steady
and the pathline has a slope of gz 0 The particle moves from
xX=60m to x=60+F4L)(30-20)s =+20m , byt keeps the

y =1[120m location during 20<t <30s, Thjs pa//)/lhe is shown

in the figure below.

For the particle released at the origin at t = 20s if folfous
that w=-4% and v=0. Thus, the corresponding pathline
extends from X=0 to x= (-42Z)(30-20)s = -4om qf { < 30s.
This pathline is shown in the figure bo/ow

(6) At £=/0<, streamlines are given by 7).’ = 72- = -36-=2

or y=2X*%C, , where c, = const.
At t=30s, sfr'eqm/mos are given by g% =4 =0
or Y=C, , where C,=const. These [ines are shown below.

particle at=30s (released at £=0)

streamlines
at £=/0s

streamlines
at £=30s >N/ _/

-§0 (z/o' ol 7 4 80 X,m
Parficle at £=30s (released aqt t=20s)

-2




4. /2

4.12  In addition to the customary horizontal

velocity components of the air in the atmosphere "
(the “wind”), there often are vertical air currents —
(thermals) caused by buoyant effects due to un-

even heating of the air as indicated in Fig. P4.12.

Assume that the velocity field in a certain region

is approximated by u = ug, v = y, (1 - y!h) for

0<y<h,and u = u,, v = 0 for y > h. Plot 77 7, /6///// 77 //{;
the shgpe of the streamline that passes through FIGURE P4.12
the origin er values Qf ug/vy = 0.5, 1, and 2. |

U=Uy , v=V,(I-F) for 0<y<h so that streamlines
for y<h are gz’vgn by y d p
dy _ v _ %) , f ly =_&fdx
ax " U Uy (l _%) Uo

0 0
Thus , ~h In(l -7,)1) =-520 X  MNote: The lower limits of lhfeyr'a}iOn
(x=0, y=0) insure that this
equation is for the streamline

throvgh the origin.
This streamline

X =-h (—%‘Z) In(1- 7,):) /s p/oHed below.

y/h vs x/h
1 m P -y = e - —
. b4 - ) p— — =T -
o »”
0.8 e -
~ - —
’ ’ ‘/ //
0.6 A 7 — —— UONO = 2
< . A — =—uONO0 =1
0.4 - : = = = 4ONO =05
1 /7 , . ;
. 4
0.2 +1A A
[
0

0 0.5 1. 15 2 25 3
| | xh

4%-/3




4./3%

4.13*  Repeat Problem 4.12 using the same in-
fdrmation except that u = ugy/h for 0 < y=h
rather than u = u,. Use values of u,/v, = 0,0.1,
92 04, 0.6, 08 anle

I, %, %
0 x

u= U;,y y V=1V, (l"‘%) for 0<y<h so that streamlines

for y<h are given by
gx- = —%- = _~_:E_V° (i.’ ) :-i\:g (hy')’) or WI?l/) xX=0 Whe’,’ y=0
-(m)— dy = j dx  This infegrafes 7‘0 give

_y ~h In(h-y)+h In(h) = fx or £+ Inf5) - ¥]

This sfr'eqm//ﬂe /s p/offed be/ow for 0< 1\,‘ </ w/'//)

ﬁoao 0.1,0.2,0.4,0.6,0.8, and 1.0 The Vﬂ/Ues were

calcvlated aﬂd p/m‘z’ed vsing an EXCEL Program.

y/h vs x/h
Us _
T g R S s ey S
~ A U g% R
09 |1 e, o ‘
08 {1 A= T S
0.7 / /" |
0.6',’/ //’
£ 05 /l///
> Y 4
0.4];,%
0.3 {14
0.2
0.1
0
0 05 1 15 2
~ xh

Y-14
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- 4.14 A velocity field is given by u = ex? and
v = cy? where c is a constant. Determine the x
and y components of the acceleration. At what

point (points) in the flow field is the acceleration
zero?

: p) ou )
| Qx =57 +u-5-)-( V-;—q' = (cx*)(2¢cX) = 2c*x

@, = 5 +UGF+V vy = (cy")(zcy) =2c%y®

ThUSJ a «-.»-gxl + yf =0 at (Xl y):(,)

#4.15 |

4.15 Determine the acceleration field for a three-dimensional
flow with velocity components u = —x, v = 4x%? and
w=x-—y,

U=-X, w= é‘x’yzj and w = X-y so that
= O +EXE1) +4x%y® (0) +(x-y)(0) =

_.é/lf w v
by =5F +U3x 5y +urd

= o +(—x) (8xy?) +(4#x*y*)(8x%y) +(x-y)(0)
= 8Xy*+32x%y° = Xy (4x%y 1)
and

dw w W
=7t *“7’*”77’*/”‘)?

=0+ (-x)(N+(4x%y*)(-1) +(x-y) (0)
= =X -¥#x%y*
T/'N/s
a =l *ﬂy} +6{gk
= x? +8x 2 (4x* -—I)} *(X-H‘xzyz)k

HY-15
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447 The velocity of air in the diverging pipe shown in Fig.
P4.17 is given by V|, = 4z ft/s and V, = 2t ft/s, where 7 is in
seconds. (a) Determine the local acceleration at points (1) and

(2). (b) Is the average convective acceleration between these
two points negative, zero, or positive? Explain.

ﬁ?% {“‘%Vié RE P4.17
Y, Ju f1
‘a) 'STI = ‘5‘% and )—FI =‘2~_$:£-‘
o)

(2)

b) convective acceleration along the pipe = U %c&

/55
W” 7 L0

/s neza{/l/e.

(2

where U >0. Af any fime, &, V,<V| . Thos befween () and(2)
J V- Vi

Aleﬂce/ U }f(—‘ <0 or e average convective acceleration

V, = 2t ft/s
——

&%-/6
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4.18  Water flows in a pipe so that its velocity
triples every 20 s. Ats = Qit has u = 5 ft/s. That
is, V.= u(t)i = 5 (3™ ft/s. Determine the
accleration when ¢ = 0, 10, and 20 s.

) v=0 w =0

sice VvV =0 becayse Vis not a
a function of x s YyorZ.
Since —-—-- = 5[ In(3) ZOjN 0.275 (3*/20)—--,: with t~s

i fa”ows that

a = 002.75l <3 a{- t—o
at =105

=
"
wiw
<
+
<l
<
D
(]
Q-
S
~

- e 4{
a = 476131;
and

a = 0.8257 st. at t=20s

419

4.19 When a valve is opened, the velocity of water in a
certain pnpe is givenby 4 = 10(1 — e™"),v = 0,and w = 0,
where u is in ft/s and ¢ is in seconds. Determine the maximum
velocity and maximum acceleration of the water.

V= 1/612 +V24iwE = IO(l“e"g) so that -gz\-/=106'£>0 for all ¢
Thus, | = VI =jod

max -
— ) a Ju ‘ u
Also, a = a,l where qx=5)-z—+“5’2‘ with §~—=0

.

rﬁUS Ox ' = /08f Y/ 7"/103‘ dy = axl - lo_f_

max s

»

{:w

417




4.20

4,20 The velocity of the water in the pipe

~ shown in Fig. P4.20is given by V, = 0.50¢r m/s
and V, = 1.0¢r m/s, where ¢ is in seconds. De-
termine the local acceleration at points (1) and
(2). Is the average convective acceleration be-
tween these two points negative, zero, or posi-

tive? Explain. FIGURE P4.20
)/ m
aV; m
F= 05
ot s%

Since Vo>V, it follows that %”0. Also, V>0 so that
the cnvective acceleration | Vix , Is positive.

et

4§18




4.2

4.21 The fluid velocity along the x axis shown in Fig. P4.21
changes from 6 m/s at point A to 18 m/s at point B. It is also

known that the velocity is a linear function of distance along the

streamline. Determine the acceleration at points A, B, and C.
Assume steady flow.

BFIGURE P4.21

"=§¥—+V-VV With u=ucx) , v=0, and w=0

this becomes
= _ /ol AU~ _ U 2
@ =(3F +ugx)l = udt i
Since W is a linear fonction of X, U= C,x +c, where the
~constants ¢, ,c, are given as Uyg=6:-C;, o
o - “and Ué-’-”e"‘O:/C,*Cz

| or (=120 ¢, = 6.
Thus, w=(120x+ 6 )2 with x~m e

From Eq.{/)
G=USKT =(120x+6) 2 (1208) ¢
or '

for Xﬂ=0 )'a:q:: 720 Z‘"g‘i

for Xg=0.05m, G = 144072,
and

) _ - ~m
for X =0.m , @ = 2160 1%,

N

4-19




“4.23

4.22 Water flows in a garden hose with a velocity of 5 ft/s, trav-
els through a 2-in.-long nozzle, and exits the nozzle with a ve-
locity of 40 ft/s. Estimate the average acceleration of the water
as it flows through the nozzle.

b1 = 2n.
(I ,./V_\/j%.ve-
L + u au au’ fl’

iy wiE
=0 +u3“ t0 +0
The average acceleration can fhus be estimated by vsing

e V,-l-Vz. _ 5ff/:2+l/0HKr 22 5‘?
and

au o Vz‘Vl - 40H/S'"$M/f ,_,2’0/3

EER (2/128
to obtain:

= u%’ = 22.5 (2;0/5) = 4730 H

Note: This acceleration is equal to 4730% /3228 =147 4imes
the acceleration of gravily (e, a, /g = 1%7).

4-20
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4; 23 y 02 ‘ |'
4.23  Asavalveisopened, water flows through : M
the diffuser shown in Fig. P4.23 at an increasing W 7/
flowrate so that the velocity along the centerline ’ “ L
isgivenby V = ui = Vy(1 — e) (1 — x/0)i, u u =3Vl — e~
where u,, ¢, and { are constants. Determine the - ~ —— — -
acceleration as a function of x and ¢. If V, = u=Voll —e=ch

10 ft/s and € = 5 ft, what value of c (other than
¢ = 0) is needed to make the acceleration zero:
for any x at r = 1 s? Explain how the acceleration
can be zero if the flowrate is increasing with time.

'FIGURE P4.23

d=3+VIV  With w=u(x,t) | y=0, and w=0

this becomes | {
&‘:(g—;lz—i—w'})%)? =@l | where a:l/o(/—e'c)(/—{-)
Thus,

O = V(1= F)c € vy -6 “Hu-$)-£)
or
( T)I:C ci %(/ —ci)]

If QX'O for apy)(aff 1s wemyst /)ac/e
[Ce “'%g(l—e":tf]:O - With V=10 and =5

ce ’C—-—'gg(l-e ’6)2'-:0 The solvtion (/‘007‘) of this eym//aﬂ

s C= 0.%90 5

For the above conditions the local 4cce/8ra7‘/0ﬂ (3% >0) s
precisely balanced by the convective deceleration (3% <0),

The flowrate ipcreases with time, bot the Flvid flows to an
area of lower Ve/ac/{y.




4.24

424 A fluid flows along the x axis with a velocity given by
V = (x/1)i, where x is in feet and ¢ in seconds. (a) Plot the ,
speed for 0 = x = 10 ftand ¢ = 3 s. (b) Plot the speed for x =
7ftand 2 =t < 4 s. (c) Determine the local and convective
acceleration. (d) Show that the acceleration of any fluid particle
in the flow is zero. (e) Explain physically how the velocity of

a particle in this unsteady flow remains constant throughout its
motion.

- e o lh&%
(a) a"‘%“é{ so at f=§’5’a=_§f—£i )
|

(b)’ For X=7ff)u::% :f,;f : 0 k
3
W _ X x Lies

X 1y .. X

© §F =4 ad uff =¥ 2

e —

() For any f/&ia/ particle =%¥ +V oV 0

which with v=0 , W=0 becomes

a =(3% +u—§-§%)2‘ =(-% + -fz)? =0

£=3s S
Fig.l
1 1 1 L
X, f°
x=7 ft _
Fig.2
2 Vs

! t s

() The particles flow ifo areas of higher velocity (see Fig.1),
bot at any given location the veloeity js decreasing in hime
(see Fig.2), For the given yelocity field 1he Jocal and
convective accelepations are eqval and ygposite, giving

2ero acceleration Hhrowh oot.

H4-22
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| 4.25 A hydraulic jump is a rather sudden change in depth of ' Hydraulic jump

" a liquid layer as it flows in an open channel as shown in S
- Fig. PA25 and Video V10.6. In a relatively short distance
(thickness = ¢) the liquid depth changes from 7 t0 zp, with a
corresponding change in velocity from V, to V, If V, =
1.20 ft/s, V, = 0.30 ft/s, and € = 0.02 ft, estimate the average

.~ deceleration of the liquid as it flows across the hydraulic jump.
How many g's deceleration does this represent?

W FIGURE P4.25

- o R " JU
a:%—zv— +VWW  so with V”"‘M()O/A, a=ql=ujyxi

Withoot knowing the acfval velocity distribotion . u =Ux),

#he acceleration can be approximated 4s

a, = U %%’ = 7 (V,+¥) Q‘T__""’) = 4 (120 +o,30),§t (o::?':o/;_zfo}f_

= -3384L
Thus, gl 3204 = -

=

X1 = /08
; 32.2 % ===

4-23




426 |

4.26 A fluid particle flowing along a stagnation stream-
| line, as shown in Video V4.5 and Fig. P4.26, slows down as it
approaches the stagnation point. Measurements of the dye flow"
in the video indicate that the location of a particle starting on
the stagnation streamline a distance s = 0.6 ft upstream of the
stagnation pointat ¢ = Qs given approximately by s =0.6¢™%%, -
where ¢ is in seconds and s is in ft. (a) Determine the speedof @ FIGURE P4.26
a fluid particle as a function of time, Voarticie(?), as it flows along :
the steamline. (b) Determine the speed of the fluid as a func-
tion of position along the streamline, V = V(s). (c) Determine
| the fluid acceleration along the streamline as a function of po-

sition, a, = a,(s).

"0’.5£

(@) With s=0¢6e it follows 1hat
¥arh’cl¢ = %Lf = 0.6 (-0.5) i ——0./3 e’o’f /s

|
!

x (b) From pam‘ (a),
5 -0.5¢

V-’-—‘ ("’0‘5)[0w6 A } Wh@l’e‘ =04 8—&51‘
Thos,
V= ('0'3)[5] , or /=-055 fifs where s~ f}

-~ (€) For steady flow, ¢ =V %
m Thus, with V=-055 and % =-05,

g = (-0.55)(-0.5) = 0.25 s f/s* where s~

- Nofe: For s>0 | A, is positive— fhe particles acceleration isfo Hhe right.

Since the parficle is moving to The /ef{, a positive as for Hhis case
implies that Hhe panticle is decelerating (as if must be for 4his
sfaymdian paim‘ flow). | |

Stagnation point, s = 0

Fluid particle
s\{. /

sy

Yyloy



4.27

- points (1) and (2).

4.27 A nozzle is designed to accelerate the fluid from Vito
V, in a linear fashion. That is, V = ax + b, where a and b are
constants. If the flow is constant with V, = 10 m/s at x =0
and V, = 25m/s atx, = 1 m, determine the local acceleration,
the convective acceleration, and the acceleration of the fluidat .

With u=ax+b , v=0, and w=0 the acceleration @=5f +V-
can be written as
a 2 % N
a = ax{ Wbef‘ﬁ ax= u JX 0
Since u=V, =108 at x=0 gnd u=V,=252 af x=| we obtain

10= 0 +}
25=a+b so that a=1/5 gqnd b=10
That is, u=(/5x+10)& , where X~m | so thal from Eq.(1)

ay = (15x+10) @ (155) =(e25x+150) I
Note: The local acceleration is zero , ’%_}_/=0 . and the

convective acceleration is f—k"i ! = (225%150) ! n

At x=0, @=507 & : atx=/|m , a@=31508
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4.2.8

4.28 A company makes cars that are shipped to be sold
throughout the country. At a dealership near the factory the cars
cost $20,000. At other dealerships the cost is higher because of
shipping charges which are $0.50 per mile. Determine the price
of a new car at a location 800 miles from the factory and the rate
of increase ($ per hour) in the car price as it is being transported
to that location on a truck traveling 55 mph on the highway. Ex-
plain your answer in terms of the material derivative.

Let x=djstance from the factory | C =cost of the car . and
¢,= cost of the car at the fyctory. Thus with r=rafe per
mile for shipping,

C=¢C,trXx =20000 +0.5X, where c~ 4 and r~4/m
HenceJ with X= 800m/

6800 = 29 000 +0.5 (800} = ’f;zo' 4§00

and

%5— = rate of increase of cost = %gg.; r del
where %{?' <0 and dx _ V= 55mph
Thys,

%? =40.5/mi (55-;,’—",-,’;) =4272.5/hr |

In terms of the material dgera‘fl.VbJ,

%_{C_ =—aﬁc‘+ Mg';% =0 +($‘5-2—”,—'.—)(#0.5’/m/) :fZZS//”“
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4.29

4,29 Repeat Problem 4.27 with the assumption that the
flow is not steady, but at the time when V, = 10m/s and

V=25m/s, it is known that #V,/dr = 20 m/s? and
aV,/at = 60 m/s%.

With u=u(x,t) , v=0, and w=0 the acceleration @ = ALY
can be written as
a=ayl where g =3% tu 44 , with w=alt)x +b(h), (1
At the 7iven time (t=t) w= V=102 4f x=0 aqnd u=V,=25%2 atx=Im
ThUSJ 10=0 + b(t)

25=a(t,)) +b(f) so that a(t,)=/5 and b(4,)=10
Also at t={, S -3—%‘-:: Y. - 20 2 at x=0

T
"

and %’% "%% =60 %5 at X=/m WNote: These are local

| accelerations at time t<t,
The convective acceleration at x=0 (E?‘ (1) /s
uig = (ax+b)(a)=(/5(0+10) 25 L)=1502
while at X=] if is ,
uil - (15 YR (15 &) = 37524

The flvid acceleration at t<to is |

— m _
a =(%—% +U %%)2‘ =(20+l.50)i‘§1 = /70! 5% qt X=0

and
a=(60+375)0 & =4951% at x=im

£
1
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4.30 An incompressible fluid flows past a turbine blade as 4
shown in Fig. P4.30« and Video V4.5. Far upstream and down- YAl
stream of the blade the velocity is V. Measurements show that R I
the velocity of the fluid along streamline A—F near the blade is
as indicated in Fig. P4.30b. Sketch the streamwise component VN I A
of acceleration, ay, as a function of distance, s, along the stream- 0

line. Discuss the important characteristics of your result.

(@) ® FIGURE P4.30

a,=VIL where from the figure of V =V1s) the fonction
g?V has the fo//owm] shape.

A’

B I NG

~ Hence, the prodvct Vf;(sK has the shape shown below.

+

E,W - |
R NI I -

-~

T/)e floid deae/efd/és from A to € , 4(:.:9/3/‘4{&3‘ from € to AJ ‘»‘4'/7‘4/

the decelerates again from D 1oF . The net acceleration from
AtoF s zero (i, Y=<V, =V} ),

oh———————
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431*  Air flows steadily through a variable x (in.) u(ftls)  x(in.) u (ftls)
area pipe with a velocity of V = u(x)i ft/s, where 0 Al 10 Oki ) 3 20.1
the approximate measured values of u(x) are given 1 1 0' 2 8 17' 4
in the table. Plot the acceleration as a function . 2 13‘0 9 13’ 5
of x for 0 = x < 12 in. Plot the acceleration if 3 20'1 10 1 1‘9
the flowrate is increased by a factor of N (i.e., 4 2{3'3 1 10’3
the values of u are increased by a factor of N), p 28‘ 1 12 1 O. 0
for N =2,4,10. 6 25.8 13 10.0
— N -
Since w=uw) , V=0, and w=0 it follows that g =§-\f VvV
. P = U
simplifies o @ = q, ¢ where a, = U -%7

The valves U are given jn the table ; The corresponding valves
of jf—,’f- can be oblained by an approximate nuvmerical differentiation.
The results are shown below for the given date (i.e. with N=]).

Note that since a,=u %—% it follows that and increase n Va/ac/}(/
from & to Nu increases the acceleration from g to Vg,

X, in. u, ft/s  du/dx, 1/s  u du/dx

0 10 2.4 24

1 10.2 18 184
2 13 594 772
3 20.1 91.8 1845
4 28.3 49.8 1409
5 28.4 -15 -426
6 258 -49.8 -1285
7 201 -50.4 -1013
8 17.4 -39.6 -689
9 135 -33 -446
10 11.9 -19.2 -228
11 10.3 -11.4 -117
12 10 -1.8 -18
13 10 0 0

The results are plotled on the next page.

 (cont)
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24,31 | (con't)

% | s
25

20

L 2

u,ft/s 15 - ‘
3 y
10 ‘/ — , \\0\4_

5

0 : :
0 2 4 6 8 10 12

100 —
80 /N
60 , \\

40 -

du/dx, 1/s 20 \\
0

20 ¥ .

40

60

2500 -

2000 N=1

1500 /™ For N #1 myligly a,

1000 // by N%

8y, fi/s"2 500 \
0

0 ) 4 6 8 12 14
-500
4\( /»7;
-1000

-1500

=30




4.32

4.32 Water flows steadily through a 30-ft-long pipe from a
hot water heater to a faucet in the bathroom. The velocity is
10 ft/s. At the outlet of the water heater the temperature is a
constant 180 °F. Because of heat transfer between the pipe
and the cooler surroundings, the water temperature at the
faucet outlet is a constant 150 °F. Determine the time rate of
change of the temperature of the water as it flows through the
pipe. Assume the temperature gradient along the length of the
pipe is constant, .

e ——

%:{r = —5)-} + u%—;;) where =105 and 97 - E;},-(TL z /«50;};;,/‘90‘;'
Thos, gxl = | °F/t <o that with —33;7: =0 becavse the flow is steady
e wdT <108 (1 /1) = 102F
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EXEa)

4.33*  As s indicated in Fig. P4.33, the speed
of exhaust in a car’s exhaust pipe varies in time %
and distance because of the periodic nature of the |

|
engine’s operation and the damping effect with | ; o 7
distance from the engine. Assume that the speed | —>V B‘:::“
is given by V = Vo[l + ae ™ sin(wt)], where | |____, R V = Vyll + ae=b*sin(w)]
Vo = 8fps a=1005b=02ft"andw = 50
| ... FIGURE P4.33

rad/s. Calculate and plot the fluid acceleration at
x=0,1,2,3,4.and'5 ft for O»Sr‘t =n/25s.

Since w=u(x,t) , v=0 and w=0 it follows that

a= a¥+V VV Oxl ; w/)er'e dy = 3F

Thus, with w=V,[I +a e sinwt)] Eg () gives
ay= Vo aw € cos@t) +V,[1+a € sinwi)]V, a (-b) & ¥ sinwt)
=Va e'bx[w cos Wt) =V, b sinwt) (I ta e’b"sin (.wt))]
With 1/038{-?- , @a=0.05  b=02 # and w = 5024 "“d
| this bec:ome.s
ay =04 e [50 cos(50t) — /.6 sin(50t) ( |+0.05 e 0'2"3;,7 (Sot))] fsiz @

where t~s and x~ f}
et % from 57‘ ) for 0=t <35 s with x ?"0, /2,3, ¥, and s #,

Q)

An Excel P/‘oy/’am was Vwea/ fo c:q/aﬂ/a 7o dy from E7 [2) 77)9 m&w‘ﬁx
are shown on fhe next page.

(con't)
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433%
Ac'celeration at various x locations, ft/s2
ts x = Q ft x=1ft x=2ft x= 3 ft X=4ft x=5ft
0.000 20.00 16.37 13.41 10.98 8.99 7.36
0.005 19.22 15.73 12.88 10.55 8.64 7.07
0.010 17.24 14.11 11.56 9.46 7.75 6.34
0.015 14.18 11.61 9.51 7.79 6.38 5.22
0.020 10.24 8.39 6.87 563 4.61 3.77
0.025 567 4.65 3.81 3.12 2.55 2.09
0.030 0.74 0.61 0.51 0.42 0.34 0.28
0.035 -4.23 -3.46 -2.83 -2.31 -1.89 -1.55
0.040 -8.93 -7.31 -5.98 -4.90 -4.01 -3.28
0.045 -13.08 -10.71 -8.76 -71.17 -5.87 -4.81
0.050 -16.42 -13.44 -11.00 -9.01 -7.37 -6.04
0.055 -18.73 -16.34 -12.56 -10.28 -8.42 -6.89
0.060 -19.89 -16.29 -13.33 -10.92 -8.94 -7.32
0.065 -19.81 -16.22 -13.28 -10.87 -8.90 -7.29
0.070 -18.51 -15.15 -12.41 -10.16 -8.32 -6.81
0.075 -16.06 -13.14 -10.76 -8.81 -7.21 -5.90
0.080 -12.61 -10.32 -8.45 -6.91 -5.66 -4.63
0.085 -8.37 -6.85 -5.61 -4.59 -3.76 -3.07
0.090 -3.62 -2.96 -2.42 -1.98 -1.62 -1.32
0.095 1.36 1.12 0.92 0.75 0.62 0.51
0.100 6.26 513 4.20 3.44 2.82 2.31
0.105 10.77 8.82 7.22 5.92 484 3.97
0.110 14.61 11.96 9.80 8.02 6.57 5.38
0.115 17.54 14.36 11.76 9.63 7.88 6.45
0.120 19.38 15.87 12.99 10.64 8.71 7.13
0.125 20.01 16.38 13.41 10.98 8.99 7.36
Acceleration, a,, vs Time, t
X, #
20 0
.. /_-. 4t
15 - .,.\ / T1s
SO P 3
. N A
10 _\\:‘\\ /',-,./',.:ﬂ__q.
330 | [ —T)®
5 ‘\\\ !‘ “ '95’/ S I -3
Nm % ‘;///
£ 0
5 NN e
R———r
.‘\ ~ . — - / f‘
—10 \‘\\ \'\. -"'//.
N SR R /
"\ T\‘ --"'/ ;"/
-15 e - /
-0.00 0.02 - 0.04 0.06 0.08 0.10 0.12
s
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4,34 4.34 A bicyclist leaves from her home at 9 A.M. and rides to a

beach 40 mi away. Because of a breeze off the ocean, the tem-
perature at the beach remains 60 °F throughout the day. At the
cyclist’s home the temperature increases linearly with time, go-
ing from 60 °F at 9 A.M. to 80 °F by 1 P.M. The temperature is
assumed (o vary linearly as a function of position between the
cyclist’s home and the beach. Determine the rate of change of
temperature observed by the cyclist for the following condi-
tions: (a) as she pedals 10 mph through a town 10 mi from her
home at 10 A.M.; (b) as she eats lunch at a rest stop 30 mi from
her home at noon; (c) as she arrives enthusiastically at the beach
at 1 pM., pedaling 20 mph.

From the given data the femperatore T,
varies as a fonction of location, X, and

time, t, as shown in fhe figyre.
] 6T Lr bov
Thos, BT < 4% +ugd
(@) At X =/0mi and ¢=10am, |
Il _ (75°-69°) _ 45 % 6o’ B /)%
o’ “hr R 0 29 (c)6 0
and €0 ~ 0
 (60°-¢s° ;. |
&= (6’7,1'? o“;i) T é%."' 7 each
Thus, with w=1omi/hr, fox

X,mi
5 = 15 Yhr 410 - f o

= 2.5 Yhr

o7 _ [65°-40) _ &,
(b) At noon with &=0 (resting) and 5+ = i TF “hr

%%:%—}}uzg ._:%7—' =.§. “hp = /.25 Yhr

: : ) T _ AT _ (60°-80°)
(c) Vpan arival at the bedch ‘u/r//) lt:*w”’/”‘bj it "9 and 3x = 4omi

=-0.5 o/m/‘
DT _ o1 T

D=3t Ui = U =202 (0.5 i) 107 hr

Q..
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4.35 |

4.35  The temperature distribution in a fluid is givenby T =
10x + Sy, where x and y are the horizontal and vertical coor-
dinates in meters and T is in degrees centigrade. Determine the
time rate of change of temperature of a fluid particle traveling
(a) horizontally with ¥ = 20 m/s,v = 0 or (b) vertically with
“=0,v=20m/s.

T T, 4T
BF = H+udt

T Ty o °'C
Thos, if U=20" and v=0, then 3L zufL =(20m)(10C) =200
and

+V§f;) W/)e/‘é’ "{. =0

| m 5% - pp &
if U=0 qpd V=205, fﬁeﬂ:b%z= V;,é% ‘(2”:;””)(5/”) ’/W~S

RV

4.36 Water flows over the crest of a dam with speed V as shown
in Fig. P4.36. Determine the speed if the magnitude of the
normal acceleration at point (1) is to equal the acceleration of

gravity, g,
FIGURE P4.36
2 K
a, = .%; or with q,=32.2 étz , V=ya, X =1/(32.2£%)(2H)

= ft
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4.37 As shown in Video V4.2 and Fig. P4.37, a flying airplane
produces swirling flow near the end of its wings. In certain cir-
cumstances this flow can be approximated by the velocity field
4= —=Ky/(x* + y?) and v = Kx/(x* + y?), where K is a con-
stant depending on various parameter associated with the air- |
plane (i.e., its weight, speed) and x and y are measured from the i
center of the swirl. (a) Show that for this flow the velocity is
inversely proportional to the distance from the origin. That is,
V= K/(x* + y*)" (b) Show that the streamlines are circles.

' A
s et e | LRk T K
(@ V= yutsat = [(x’+y’)”“ e )/‘)J )

or

V= -',}:{, where I = \[x%y?
| Kx

(b) Streamlines are given by % = ,-L’i-—’: = _(.’f__“f_)_ = _ .y)i
Thus, (x*+y*)
ydy = -Xdx which when infegrated gives

2
Ty =
or

X"+ y* = Canstant

"‘zLXZ+C,J where G, is & constant
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4.38 Assume that the streamlines for the wingtip vortices
from an airplane (see Fig. P4.37 and Video V4.2) can be ap-
proximated by circles of radius r and that the speed is V = K/r,
where X is a constant. Determine the streamline acceleration,
a,, and the normal acceleration, a,, for this flow.

B FIGURE P4.3a7

a, = V% where since v=£ av_,
Thus |

4. = 0
,9/:0’
2 a
K/r K
a”-.: % = ‘(__7‘._._). = 3
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4. 39

4.39
of Vo = 40 m/s as shown in Fig. P4.39. From a more advanced
theory it is found that the speed of the fluid along the front part
of the sphere is V = $V, sin 6. Determine the streamwise and
normal components of acceleration at point A if the radius of
the sphere is @ = 0.20 m.

A fluid flows past a sphere with an upstream velocity

FIGURE P4.3q

V=3V, sinb =3 (*0%) sin6 = 60 540 &

k8
_ V*_ (60 sing0°)* 2 m
MR Z T G o CIHHOS

v ST ) V _ 3V 28
ds =V§—3—=(605//79)';§- , Where %*Wﬁ

From Eq.(1) -%— = 60 cos6 wo
Also s=a0 =020 m where 0~rad, so that &5 = 51—
Thus, for 6=40° |

a, = (60 sin #0°Z)(60cos 40" %) (53{7,,) = 8860 %

)
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4.40*  For flow past a sphere as discussed in

Problem 4.39, plot a graph of the streamwise ac-
celeration, a,, the normal acceleration, a,, and
the magnitude of the acceleration as a function Vo
of @ for 0 = 6 < 90° with V, = 50 ft/s and g = ' ’
0.1, 1.0, and 10 ft. Repeat for V, = 5 ft/s. At
what point is the acceleration a maximum; a min-

imum?
2
V2 (£ sine) A
@y =5 = 2= = 40” sin”6 (1
and ds = V%Z =V 39 3% S where ;%V- -‘-"‘g'%cosﬁ and s=a@
or 8 - L
Thus, 3?2 a
as = (3 Vs sinb) (£ Vy cos8) 4 = 4ra- sinf cos6 (2)
Hence the magnitvde of the acceleration is
2 i 1 2 - -
lal =yai+aqd = —g—%‘i /sm"& +Sin’0 cos*® = _Z_gg $ingsin’e +cose
RN o 915?
@ lal=ga sing  Thus, ||, =0 af 80 lal =24 af 6=90°

6,deg a, ft/s® a, fi/s? a, fi/s?

0
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
80

. Yo 7/6 ds , 4, 4”43&7«7{‘/;”%
Eons. (1)) and (3). The resolis are shown befow. The resits for

other valves are similar if fhe factor V,%/a is accomted for.
The followirg data Is for V, “SHs, a=1#

An Excel Program was wed 4o calos

0.0 0.0 0.0 Acceleration vs Angular position
04 49 49 =
17 96 98 60 Vo=51t/s
38 141 146 a=1+H¢
66 181 192 50 1| - e/
100 215 238 | « P
4
14.1 24.4 28.1 E 40 +—+ ,‘f T — = normal accel, fts42
185 264 323 g ’
232 2717 362 s 30 — LR 4 | |== ==streamwise accel,
281 281 398 5 ! fs"2
33.0 27.7 431 2 20 7 / '\\ = = = accel, ft/s"2
37.7 264 461 | © / X
422 244 487 10 A // \
462 215 510 Ve \
497 181 529 0
52.5 141 543
546 96 554 0 10 20 30 40 50 60 70 80 90
55.8 4.9 56.0 6, deg
56.3 00 563
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4.41 A fluid flows past a circular cylinder of )

radius a with an upstream speed of V, as shown v
in Fig. P4.41. A more advanced theory indicates ,

that if viscous effects are negligible, the velocity 1A A
of the fluid along the surface of the cylinder is > \1
givenby V = 2V sin 0. Determine the streamline

and normal components of acceleration on the

surface of the cylinder as a function of V,, a, and

b FIGURE P4.4/

n = '%2—-: (2Yo5in0)" _ 4152 sin”6

a "—a*m
and

v
5o 55, where 35 =2V, cos6 and s=ab
or ,"_Q,.:_at,

Thos, ' "‘sz
ag = (2V, sin6)(2Vs cosO)gq = 3 Sinf cos

4,424

4.42%  Use the results of Problem 4.41 to plot

graphs of g, and a, for 0 = 0 < 90° with V, =
10 m/s and a = 0.0l, 0.10, 1.0, and 10.0 m.

2 2
From Problem 441 , gﬂz—‘%‘é’- sin*6 gnd s =-%—lé s$/n8 cosb.

These resvlits with V,=102 and a=o0.01 ,0:19, 1.0, and 10.0m
are plotted below.

a=001ma=010ma=10m a=10m a=010ma=010ma=10m a=10m

6, deg  a, f's’ a,fts® a, fs® a, fi/s? a, f's®  a, fts® a, ftIs?  a, fi/s?
0 0 0 0 0.00 0 0 0 0.00
5 3473 347 35 3.47 304 30 3 0.30

10 6840 684 68 6.84 1206 121 12 1.21

16 10000 1000 100 10.00 2679 268 27 2.68

20 12856 1286 129 12.86 4679 468 47 468

25 15321 1532 153 156.32 7144 714 71 7.14

30 17321 1732 173~ 17.32 10000 1000 100 10.00
35 18794 1879 188 18.79 13160 1316 132 13.16
40 19696 1970 197 19.70 16527 1653 165 16.53
45 20000 2000 200 20.00 20000 2000 200 20.00
50 19696 1970 197 19.70 23473 2347 235 23.47
55 18794 1879 188 18.79 26840 2684 268 26.84
60 17321 1732 173 17.32 30000 3000 300 30.00
65 15321 1532 1563 15.32 32856 3286 329 32.86
70 12856 1286 129 12.86 35321 3532 353 35.32
75 “10000 1000 100 10.00 37321 3732 373 37.32
80 6840 684 68 6.84 38794 3879 388 38.79
85 3473 347 35 3.47 39696 3970 397 39.70
20 0 0 0 0.00 40000 4000 400 40.00

~ (con't)
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agvs 0. ' » a,vs 0
100000 100000
; /
10000 ,/ \\‘ 10000 -
Fi
/
f
| \
1 i I
[y
, z
s M /
7 \ /
1000 " A 1000 1
; 1
4 s
o i “ a=001Tm —a=0.01m
¢ I i —— —a=0.10m 4 ,‘ - —— —a=01m
] £ .
& ittty e a=1.0m 3 1 AT1TTT f==--e a=10m
© i .
AT 1+ —-=-a=10.m ! e —-—-a=10m
'." N, ) y B ‘
100 4 '" | 100 {
KD
; " >
: : i
[N
! v
. /
’ A . /
! K L
10 ',’ Y 10
: T
; o 17
" |3
’ ] : l
1
I
I
1 1
0 50 100 0 50 100
6, deg 0, deg




4.43

4.43 Determine the x and y components of
acceleration for the flow given in Problem 4.6. If
¢ > 0, is the particle at point x = x, > 0 and

y = 0 accelerating or decelerating? Explain.
Repeat if x, < 0. '

Since U= c(X*=y2) and v=-2cxy it follows that
a=al tayf , where
a=2+ud+ v—%,‘- = c(x*y*)(2ex) +(-2cxy)(-2cy)
or
a, = 2¢*x(x*+y2

and
ay =5 *U3x +v3y =clx-y?)(-2cy) +H-2exy)l-2cx)
or 2 2 2

@y =2c*y(x*+y?)

For X=X, and y=0 we obtain
u=cx; , v=0
and

2,3 =

Thus, with c>0 and x,>0 it follows that w>0, g, >0; .6, the

flvid is accelerating.
With ¢>0 and X,<0 it follows +hat y >0, ax<0j‘ ‘. 6., the

flvid is decelemfing-
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4.44 When flood gates in a channel are opened, water flows
along the channel downstream of the gates with an increasing
speed given by V = 4(1 + 0.11) ft/s, for 0 < ¢ < 20 s, where ¢
is in seconds. Fort > 20 s the speed is a constant V = 12 ft/s.
Consider a location in the curved channel where the radius of
curvature of the streamlines is 50 ft. For = 10 determine
(a) the component of acceleration along the streamline, (b) the
component of acceleration normal to the streamline, and (c)
the net acceleration (magnitude and direction). Repeat for
t=30s.

V="~2(1+0.1t) ff/s for 0<t<20s and V=12 ft/s for { >20¢

Q = V%j‘gM +9 here -c%g=0
Thus

J

a. = )‘)—F and g, = %—J where R=50f

() For t =/0¢*

(a) g = %‘L = 4 (0.1) .-=0,4l:iz

() a, = V*/R = [#(1+0100)] {+Y/s* /(50ff) = 1,28 />
and

%
(c) a=(a? +q;)y“s[( o4 £y H1.288)" ] o 34%

(2) Eor £ =30s:

(a) Since V=12 t/c = constant %@Zﬁ? and -3—3\’3 =0 so thet
oV 2

(b) ay =V/R = (12 #46)/(508) = 2,888,
and y
(ca= (anz-l-as’—)z =q, = 2.95’%

R, =i

Q)

4113
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445 Water flows steadily through the funnel shown in Fig.
P4.45. Throughout most of the funnel the flow is approximately
radial (along rays from O) with a velocity of V = ¢/r2, where
r is the radial coordinate and c is a constant. If the velocity is

- 04 m/s when r = 0.1 m, determine the acceleration at points
A and B.

FIGURE P4.45

2
a=ayh+a, &, where a,,=~%- =0 sipce Re=co (ie, ;‘he_ iir)eamlines
v are straig
/9/501 a =V-§:¥‘ ‘-'-'V‘j—,:: , where V = '*ffi

Since V=0.48 when r=0.Im it follows that

2 -3 m3 4x1073
c=Vr*=0.42)(0.1m)" = 4#xj0"3 , or V= ré & where r~m

Thus, )
‘ = (L \[_2€ |\ _ 2C~
ag= r’-)( r3) = Trs
At point A 3 ‘ 0.12m
P _ 2o EY 32002
de. — \5 ’ S2
A ]
At point B: , 7
=2(‘fX/o'3_fs_{)_ 2 _ /'/718._”’.3 0ulm r;,8-= ,(O,I)z+(€9.06)2
ST (0.1147m)s s o 1167

Y44
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4.46  Water flows through the slit at the bottom of a two-
dimensional water trough as shown in Fig. P4.4 6. Throughout
most of the trough the flow is approximately radial (along rays
from O) with a velocity of V = c/r, where r is.the radial co-
ordinate and ¢ is a constant. If the velocity is 0.04 m/s when
r = 0.1 m; determine the acceleration at points A and B.

FIGURE P4.46

— A V2 ’ .

a =4d,n +*q §, where Gn= '\ﬁ-/’_ =0 since K =ce (z.e., )‘f)e §f}l)‘f¢)lmllnes
oV - | are Siraig

Alse, qg = V—g—% ==V 3F, where V=-f':

Since V= 0.04% when r=0.1m it follows that

; -3 m? #x10
¢ =Vr=(0.048)(0.Im) = #x16° B op V=2 B \yhore oo,

Thus,
_ - _6_.)(.5_.) _c?
s rAArxl= g
/97( point A 2 :
Pg T ) RN x10°° 5
s (008’”)3’ 3
At point B 2,
ponr (4x9°8)* 2.00x,5% 2
as= " (0.zm)? 00X/0
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4.47  Air flows from a pipe into the region R
between two parallel circular disks as shown in

Fig. P4.#7. The fluid velocity in the gap between  REZZHZLZ. :</ :;/_//ri{/(/ e
the disks is closely approximated by V = VRIr,

where R is the ra};iiuipof the disk, )r, is the radial ~ RRZZZZ (//@ )} / S
coordinate, and V, is the fluid velocity at the edge , U

of the disk. Determine the acceleration for r =
1,2,0or3ftif Vo= 5ft/sand R = 3 ft.

Disks

———— VO
LA

<“Nyy

Pipe

FIGURE P4.47

2 o 2
a=ayh+as8, where g, =-%/?- =0 since K=°° (i.e, the streamlines
WV .k aresiraight)
Rlso, as=V 55 =V 45, where V=22
, 15§
Since Y= 5-?* and R=3f , V= - -ii., where r~ft

777(/54 — fty2 2
bR VoR o"’R’z_ (5'3') (3f1) __ 225 # P~
a =()- L) = - L8

-— ,-.3 = - «,—’—.—gﬂs = ra _.ST:'")
A r=lft, g=-225%
Al r=2ft, g =-28.4

At r=3f, g.=-8338

H-tb
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4.48 Air flows into a pipe from the region between a circular
disk and a cone as shown in Fig. P4.48. The fluid velocity in the
gap between the disk and the cone is closely approximated by
V = V,R*/r*, where R is the radius of the disk, r is the radial
coordinate, and V,, is the fluid velocity at the edge of the disk.
Determine the acceleration for » = 0.5 and 2 ft if Vo = 51t/s
and R = 2 ft,

BFIGURE P4.48
A % . :
d=0h+a 3, where an =7 =0 since R=ew (i.e. the stregmlines

. ., . arestrajght)
Alse, q_= v-;,"—_‘é = —'V-g',[Z since I ands are pointed in opposite Z/i/‘eaf/'ow‘e

Thus with V=V,R/r? if follows that
a. = ~(Vo R*/r*) (-2, R/) = 2, *R¥/r*

=2 (586 (20)'/r% = 800/r° £ yhere r~ff
Atr=051 g =800/.5) % = 25600 14

£
Mr=24 q =800/(2.00 & =254

Y47
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| 4.49  Water flows through a duct of square cross section as - B B p O F F

shown in Fig. P4.49with a constant, uniform velocity of V = 22 77 77777 77 T BT
20 m/s. Consider fluid particles that lie along line A-8 attime y_ 5o ws
1 = 0. Determine the position of these particles, denoted by line  _,
A'-B', when 1 = 0.20 5. Use the volume of fluid in the region
between lines A—B and A’-B’ to determine the flowrate in the
duct. Repeat the problem for fluid particles originally along line
C-D; along line E~F. Compare your three answers.

§
7]/ /Il /III/I/II//Il/l//l/////ll// WSS
A & C c’ E F
FIGURE P4.49

Since V is constant in time and space, all particles on line AB
move a distance L=V at =(202)(0.25) = 41 from £=0 to f=0.2¢
Thus, the volme of ABA'B’ /s Vgag: = (&5m)*(4m) =100 m*
sothat

_ Yasay _ L.oo m? m3
Q= 2% = LB - 50 2
A 0.2s —

Simitarly fraom t=0 tot=0.25 the flvid alng lines CO and EF
move to CD and £ ?‘,’res,oacfiue!y. Also, Ypey =Viepgrrr = Yopnar
so that we obfain Q= Z?‘Z" =503 regardless which line we considar.

450 |

4.50 Repeat Problem 4.49 if the velocity profile is linear from
0 to 20 m/s across the duct as shown in Fig. P4.50.

FIGURE P4.5¢

From 10 40 4<0.] s #he particle /}7/'//37//)/ at B travels a distapce
by = Vot =(202)(0.15)=2 m as show, Particle A remain fixed since

Va=0. Since the velocity profile is linear, line AB remains straight, ot
‘tilks" as wdjsated.  Thus, the volme of fhid crossing the initial line

AB is %BB’ = -;2'—/8 A =’2L(2m)(0~5m)2=0.25m3‘ so that

Q = %BB’ = 0.25m?

3
i - m N
— LS 258 Since 1?(’;”:

follows that the same valve of Q is obtained regardless which volume
is vsed.

= YVerrs = Vomgs it

4-48
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R — '—L/Control surface
Bl  Sluice gate | .

4.5 In the region just downstream of a sluice gate, the wa:
ter may develop a reverse flow region as is indicated in
Fig. P4.51 and Video V140.5, The velocity profile is assumed to
consist of two uniform regions, one with velocity V, = 10 fps
and the other with V,, = 3 fps. Determine the net flowrate of -
walter across the portion of the control surface at section (2) i
the channel is 20 ft wide. )

V, = 10 ;t,/s
FIGURE P4.5]
Q= VA -VA = (102 (L20)(208) -(38) (Lo 1) 206)
= /32 £

4,52 (452 Attime r = 0 the valve on an initially  as p = p (1 — e™*), where b is a constant, de-

empty (perfect vacuum, p = 0) tank is opened  termine the time rate of change of mass within
and air rushes in. If the tank has a volume of ¥, the tank.

and the density of air within the tank increases

For t20 , p=p,[I- &1 3:17‘ that M = mass of air in tank

- = o =@ [1-e
Thus, g;’”-=e;v;be"t ¢ € 1=

4-4q
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4.54 Water enters the bend of a river with the uniform veloc-
ity profile shown in Fig. P4.54. At the end of the bend there is
a region of separation or reverse flow. The fixed control vol-
ume ABCD coincides with the system at time 7 = 0. Make a
sketch to indicate (a) the system at time ¢+ = 5s and (b) the
fluid that has entered and exited the control volume in that 4
time period. Control volume

V=1ms

2

mFIGURE P4.54

Since the distance the floid travels in time §t=5s is f= Vit the flwd
at A-8 whep t=0 has traveled /=(/m/¢) (5s)=5m when t=dt<5s. Thrs
is shown in the figure below. Simifarly, the flvid acrose €-D at +=0 has
moved as indicated when t=dt<Ss. Thys 1he bovndary of the system
at =55 are as show in the figure below. The flvid thal enfered and
exifed the control volome in hat time period is also shown.

B B/
Flvid tha} has
entered
conirol
volume
| S,
Afb’ v
o
~— — — control volyme and

Flvid that has
exrted condrol |
Floid thad has volume
entered contro

volyme

system af <0
........ system at t=5s

-5
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4.5%8 A layer of oil flows down a vertical plate as shown in
Fig. P4.55 with a velocity of V = (V,/h?) (2hx — 22) | where
Vo and h are constants. (a) Show that the fluid sticks to the plate
and that the shear stress at the edge of the layer (x = h) is zero.
(b) Determine the flowrate across surface AB. Assume the width
of the plate is b. (Note: The velocity profile for laminar flow
in a pipe has a similar shape. See Video V6.6.) ‘

vix)

a) W= —}7/%: (2hx -x?)

7Thus,
w| =2(0-0) =0 and
X=0

@ FIGURE P4.55

Tl =u %/y(%’;[zh -2x| =0
X=h x=h x<h
Hence, the flvid sticks fo the plate and there fs no shear

~ stress al 1he free ;,S‘U/*face..
x= h
b Q,, = fnrdf?jnrb/x = (% (ahx-x)b b

or

h
Qpa = Yeb [hx2-4x°| = 21hb
| =5khb

4-5]




| with uniform velocity at each inlet and outlet. The fixed control
- volume indicated coincides with the system at time t = 20 s.
- Make a sketch to indicate (a) the boundary of the system at time

456

4.56  Water flows in the branching pipe shown in Fig. P4.5¢

t = 20.2 s, (b) the fluid that left the control volume during that
0.2-s interval, and (c) the fluid that entered the control volume
during that time interval.

~(2)

YYyyY,=1ms

m/s
MFIGURE P4.56

Since V is constant , The flvid travels a distance 4= Vit in
time at . T/?U.s*} /,:-' V ét = (28) (20. -20)s = O.4m

L= Vo bt = (1 ) (20. -20)s = 0.2
and ,43= V:,.Ji = (1.5-’-5"'-)(20, -20)s = 0.3 m

The system at t=202s and the flvid that has entered or
exited the control volume are indicated in the figure below

« £, =03m
A

— — — con}rol volvms and system at t=zos
sys‘fe'm at t=20.25

4-52
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4.57 Two liquids with different densities and viscosities fill the
gap between parallel plates as shown in Fig. P4.57. The top
plate moves to the left with a speed of 5 ft/s; the bottom plate
moves to the right with a speed of 2 ft/s. The velocity profile
consists of two linear segments as indicated. The fixed control
volume ABCD coincides with the system at time ¢ = 0. Make a
sketch to indicate (a) the system at time ¢ = 0.1 s and (b) the

fluid that has entered and exited the control volume in that time
period.

TS ¢
BFIGURE P4.57

From t=0 to t=0,1s the botiom plafe (and the liguid that sticks to /i)
moves b =Vat =(2f/s)(0.1s) = 0.2 £ {0 the right- Similarly, the
top plate moves 1o the leH 4 distance L=Vt «(5#/:)(0ls) = 0.5 4
The flvid along lines A-D and B-c also move dislances g1ven by
L= Vst Forexample, #he interface betwsen the 2 ligide moves
distance L=Vet = (2414 (0.15) = 0.2 4. The flyid |

ayer 0.5 {'/ 4501/8
the bottom plate has V=0 and therefors, dosc not move. The corrosponding
af/ls'p/naeﬂmn/ of the flvid orly/ﬂa/é' a/ﬂlﬂy A-0 and 8-C Is shoup jn Yhe
frgure befow.

control volume and system at 1=0
-------- system at +=0.1s

////, flvid that exited control volime
\\\\\ flvid that entered control Volme

4-53
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4.58  Water is squirted from a syringe with a speed of V =
5 m/s by pushing in the plunger with a speed of v, =
0.03 m/s as shown in Fig. P4.58. The surface of the deforming
control volume consists of the sides and end of the cylinder and
the end of the plunger. The system consists of the water in the
syringe at 7 = 0 when the plunger is at section (1) as shown.

Make a sketch to indicate the control surface and the system
whenr = 0.5 s.

FIGURE P4.58

During the t =055 time interval the pliger moves 4=V &t =0.015m
and the wafer/}J/'il/'a/ﬁl at the ex/f moVes /,_= V(fl‘ =2.5m. The
corresponding control surfaces and systems af t=0 apd t=0.5s
shown in The Fgure below.

— — — conirol volume af t=0/ss

R sysfem af £=05s

-S4
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4.59 Water enters a 5-ft-wide, 1-ft-deep channel as shown

in Fig. P4.59. Across the inlet the water velocity is 6 fi/s in

the center portion of the channel and 1 ft/s in the remainder

of it. Farther downstream the water flows at a uniform 2 ft/s
velocity across the entire channel. The fixed control volume
ABCD coincides with the system at time ¢ = 0. Make a sketch 6 s |
to indicate (a) the system at time r = 0.5 s and (b) the fluid

that has entered and exited the control volume in that time
period.

- Control surface

B FIGURE P4.59

During the £ =0.5s timo interval the flvid that was along
line BC at fime £=0 has moved fo the rizht a djstapce
J=V 1= fof (o.ss) = | 1. 5‘//)1/}51’/)// portions of the
flvid along line AD have moved [L=1# (0.55) = o.5¢/
and £=6£(0.55) =3t Ths ascsomes the 12 qnd
68 fluid streams do not mux or intermingle dvring the
0.5s time ipferval. See {}‘71//'6 befow. o

e ]
3 Rl [0
. i | e I
f/llld 'Hkﬂl - o | . /r—
e PN [l Pl tat
Volume DR et exited conirol
e o5t !. Volvate
y <L
.....‘ T RS ST T o enmm - :.:—_-_‘J"—.":': /
b D' | c ¢

fixed control volvme
semmmooeoo. System af £20.55

2 ft/s
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4.60 Water flows through the 2-m-wide rectangular channel
shown in Fig. P4.60 with a uniform velocity of 3 m/s. (a) Di-
rectly integrate Eq. 4.16 with b = | to determine the mass
flowrate (kg/s) across section CD of the control volume,
(b) Repeat part (a) with b = 1/p, where p is the density. Explain
the physical interpretation of the answer to part (b).

————— Control surface

BFIGURE P4.60

L]

0 burf bV Y/

CSout R J =
With b=/ and VA =V cos® hs becomes { n
. c
B, = Egel/cosﬁ dA =gV cos6 Gjp A
=tVcosO A, ,  where A, =4 (2m) [=o;9;5;’" 1.
5(359”’)(2’”)
= 603'9 )ml

Thus, with V=3m/s,
s = (28)cost (lo)n* (991 48) = 3000 2

b) With b=1/p Fg (1) becomes
By =S VA dh =(Veuso di= Vews 4,
cDh (2]

=(3g”—'-)60:9 (606’9)’”2 = 3,00»’3'

With b= p = Z—%"‘;g = ;”%g it follows that “B = volme”

(ce, b= E%) so that (V-idh = 8.,0, reprasents 1he volme
flowrale (m%%) from the contrel volome.

4-56




£.61 |

15 ft/s 1
e '
4.61 The wind blows across a field with an approximate > - tBﬁ

velocity profile as shown in Fig. P4.61. Use Eq. 4.16 with the > 1
parameter b equal to the velocity to determine the momentum ] égt
flowrate across the vertical surface A—B, which is of unit depth :__,___,,

into the paper. 1

201t

y l

14t :

l

X 7N yt'/ ‘Ilm L hdOd KL /ll e ( A ‘A‘a (LA
n FIGUBE ‘ Ff4k.61
R y=20f{
g - A = = a l\) A
o = | DV-AdA = VoV VAdA = o ((VOLvD)-E111)dy
A8 =0
20 AB y
A 2
=pr(V dy
0
= H - < -

BU'Il) V= 7%' fw‘ 0"}"’0{{((. V'Oa'fyzﬂj V-—/S'g af)/../g)

and V =15% for y=lo fi

lé [f( Sy dy + f(ls)a/y] ()Z[.

slvgs %
=0.00238 22 [ 750 i +2250 277

= 741 S—ngzf*

10 10
+225y

3
3 ]
0 0




| #.62 | Particle

xatt = 0s(ft) x att = 0.002 s (ft)
4.62 (See, “Follow those particles,” Section 4.1.) Two pho- 1 ~0.500 —0.480
tographs of four particles in a flow past a sphere are superposed 2 —0.250 —0.232
as shown in Fig. P4.62. The time interval between the photos is 3 —0.140 ~0.128
At = 0.002 s. The locations of the particles, as determined from N N
the photos, are shown in the table, (a) Determine the fluid ve- 4 -0.120

locity for these particles. (b) Plot a graph to compare the results
of part (a) with the theoretical velocity which is given by
V= V(1 + &’/x*), where a is the sphere radius and V, is the 0:=0
fluid speed far from the sphere. ' ©1=0.002s

BFIGURE P4.62

The flvid velocily (which [s assymed +o be the same ac the particle :/e/oa/;(}/)
can be estimated by

V = ax /af
Thus, for particle (1) V] = [-0.480 41~ (~0.50081)] /(0.0025) = 19 fi/s

During fo 0.002. time interval the averags location of the pardicle was

X = [(-o.400#1) +(-0.5004)] =-0.0490 f} |
By simlar calcvlations the foll Wilg experimental resvlts were obfamed:

l

i

Pm#gLe X, fi Y fifs These ex,aen/'/ﬂeﬂfa/ resylts and the
2 |ommt | G theorclical resulls (V=V, (1+42%) yhers
a3 |-o3% | & Vo=108/s and a = 0.14) are plotied jn the
# ol ¥ figvre befow-
= — 10—
\\\
8
\ 7
\.\ 6]
v, ft/s * 5
s
———theo “
BN | exper:i,ment \ 1

-0.5 -0.4 -0.3 -0.2 -0.1
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4.63 (See, “Winds on Earth and Mars,”
10-fi-diameter dust devil that rotates one revolution per second
travels across the Martian surface (in the x-direction) with a
speed of 5 ft/s. Plot the pathline etched on the surface by a fluid
particle 10 ft from the center of the dust devil for time
0 = ¢ = 3. The particle position is given by the sum of that for
a stationary swirl [x = 10 cos(2mrt),y = 10 sin(27r7) ] and that
for a uniform velocity (x = 5¢, y = constant), where x and y are

in feet and ¢ is in seconds.

The path line [s given by

X= 10 cos (27¢) +&¢

Section 4.1.4.) A

;’/ﬂ—f 10 sin (27¢) | where Xntd, y~f apd ¢~
This path is plotied for 0<t<2s befow.

[44]

Particle Path

~
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