American University of Beirut
 MATH 201

Calculus and Analytic Geometry III
Fall 2005-2006

Final Exam

Name: \qquad ID \#: \qquad
good luck
Exercise 1 (10 points) Given the surface $z=x^{2}-4 x y+y^{3}+4 y-2$ containing the point $P(1,-1,-2)$
a. Find an equation of the tangent plane to the surface at P.
b. Find an equation of the normal line to the surface at P.

Exercise 2 (15 points)
a. Which of the following series converges and which diverges? justify.
i. $\sum_{n=0}^{+\infty} \frac{e^{n}}{1+e^{2 n}}$
ii. $\sum_{n=1}^{+\infty} \frac{1-\cos n}{n^{\ln n}}$
iii. $\sum_{n=1}^{+\infty} \frac{n}{10+n^{2}}$
b. Find the radius of convergence of the series $\sum_{n=0}^{+\infty} \frac{x^{2 n}}{2^{n}}$, then find its sum.

Exercise 3 (10 points)

a. If $w=f(x, y)$ is differentiable and $x=r+s, y=r-s$, show that

$$
\frac{\partial w}{\partial r} \times \frac{\partial w}{\partial s}=\left(\frac{\partial f}{\partial x}\right)^{2}-\left(\frac{\partial f}{\partial y}\right)^{2}
$$

b. Prove or disprove: The function $f(x, y)=\frac{x^{2} y}{2 x^{4}+3 y^{2}}$ can be extended by continuity at $(0,0)$.

Exercise 4 (10 points) Find the absolute minimum and maximum values of the function $f(x, y)=4 x-8 x y+2 y+1$ on the triangular plate whose vertices are $(0,0),(0,1)$ and $(1,0)$.

Exercise 5 (10 points) Evaluate the integral $\int_{0}^{4} \int_{\sqrt{x}}^{2} \sin \left(y^{3}\right) d y d x$.

Exercise 6 (10 points) Let $I=\iiint_{G} x y z d V$ where G is the solid in the first octant that is bounded by the parabolic cylinder $z=2-x^{2}$ and the planes $z=0, y=x$, and $y=0$.
a. Express I as an iterated triple integral in the order $d z d y d x$, then evaluate the resulting integral.
b. Express I as an iterated triple integral in the order $d x d z d y$ (do not evaluate the integral).

Exercise 7 (15 points) Rewrite the following triple integral

$$
J=\int_{0}^{2} \int_{0}^{\sqrt{4-y^{2}}} \int_{\sqrt{x^{2}+y^{2}}}^{\sqrt{8-x^{2}-y^{2}}} z^{2} d z d x d y
$$

a. in the order $d x d z d y$ (do not evaluate the integral).
b. in cylindrical coordinates (do not evaluate the integral).
c. in spherical coordinates, then evaluate the resulting integral.

Exercise 8 (20 points)
a. Evaluate

$$
\int_{(0,0,1)}^{(1, \pi / 2, e)}\left(\ln z+e^{x} \sin y\right) d x+e^{x} \cos y d y+(x / z-z) d z
$$

b. The outward flux of a field $F=M \mathbf{i}+N \mathbf{j}$ across a simple closed curve C equals the double integral of $\operatorname{div} \mathbf{F}$ over the region R enclosed by C :

$$
\begin{equation*}
\oint_{C} M d y-N d x=\iint_{R}\left(\frac{\partial M}{\partial x}+\frac{\partial N}{\partial y}\right) d A \tag{1}
\end{equation*}
$$

Find the outward flux of the field $F=2 x y \mathbf{i}+x^{2} \mathbf{j}$ across the curve C in the first quadrant, bounded by the parabola $y=x^{2}$ and the line $y=1$.
i. by using the line integral in the left side of equation (1)
ii. by using the double integral in the right side of equation (1)

