Notre Dame University
 Computer Science Department

CSC 311 Theory of Computation
Homework 2
Hikmat Farhat

1. (25 pts) Use the closure properties of regular languages to give the state diagram of DFAs recognizing the following languages
(a) $L=\left\{w \in\{0,1\}^{*}: w\right.$ begins with 1 and ends with 0$\}$
(b) $L=\left\{w \in\{0,1\}^{*}: w\right.$ has exactly two 0 's and at least two 1 's $\}$
(c) $L=\left\{w \in\{0,1\}^{*}: w\right.$ has an even number of 0 's and each 0 is followed by a 1$\}$
(d) $L=\left\{w \in\{0,1\}^{*}: w\right.$ starts with a 0 and has odd length or starts with a 1 and has even length $\}$
(e) $L=\left\{w \in\{0,1\}^{*}: w\right.$ does not contain 1010 $\}$
2. (10 pts) Construct a DFA to recognize the language of all binary numbers which are multiple of 5. In other words, $L=\left\{w \in\{0,1\}^{*}: w\right.$ is a binary number and it is multiple of 5$\}$. Example: $101 \in L$ and $1010 \in L$ but $110 \notin L$.
3. (25 pts) Give the state diagram of NFAs recognizing the following languages
(a) $L=\left\{w \in\{0,1\}^{*}: w\right.$ ends with 00$\}$
(b) $L=\left\{w \in\{0,1\}^{*}: w\right.$ contains the substring 0101$\}$
(c) $L=\left\{w \in\{0,1\}^{*}: w\right.$ does not contain 1$\}$. The NFA should contain one state only.
(d) $L=\left\{w \in\{a, b\}^{*}: w\right.$ contains 0 or more a's followed by 0 or more b's $\}$
(e) $L=\left\{w \in\{0,1\}^{*}\right.$: the final symbol of w has occurred at least once before in $\left.w\right\}$
4. (15 pts) Use the subset construction to construct DFA's that recognize the same language as in exercises 3 a and 3 b .
5. (15 pts) Let Σ be an alphabet and $D=(Q, \Sigma, \delta, s, F)$ be a finite automaton. Use the definition of the extended function $\hat{\delta}$ to show that $\hat{\delta}(q, a x)=\hat{\delta}(\delta(q, a), x), a \in \Sigma, x \in \Sigma^{*}, q \in Q$
6. (10 pts) Let $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be a DFA such that $\exists a \in \Sigma$ with the property $\delta(q, a)=q$ for all $q \in Q$. Show that either $\{a\}^{*} \subseteq L(M)$ or $\{a\}^{*} \cap L(M)=\emptyset$.
7. ${ }^{* *}$ (extra credit)Consider the language $L_{k}=\left\{w \in\{0,1\}^{*}\right.$: the $k^{t h}$ symbol of w from the right is a 1$\}$. Prove that any DFA that recognizes L_{k} must have at least 2^{k} states. (Hint: do it by contradiction).
