

Date: Monday, May 31, 2004 - 3:00 pm to 5:00 pm

American University of Beirut

Calculus and Analytic Geometry Spring 2004

Final Exam

Instructors:	Ms Sylvana Jaber, Mr Zadour Khachadourian and Dr. Mohamed Kobeissi			
Name:		<i>,</i> 		
ID #:		············		
Section:	4 (Ms Jaber) T 3:30-4:20 pm	5 (Mr Khachadourian) T 2:00-2:50 pm	6 (Mr Khachadourian) T 12:30-1:20 pm	

This is NOT an open-book exam. Your exam should have 11 pages including this one, and there are 8 questions totaling 100 points. You can continue each exercise on the reverse side if needed.

	
Question	Grade
1.	
2.	
3.	
4.	
5.	
6.	
7.	
8.	

Good luck

T 12:30-1:20 pm

Exercise 1 [12 points]: Determine if the following series converge or diverge. Justify your answers

$$\mathbf{a.} \ \sum_{n=1}^{+\infty} \ln \left(1 - \frac{1}{n^2} \right)$$

b.
$$\sum_{n=1}^{+\infty} n \sin \frac{1}{n}$$

$$c. \sum_{n=1}^{+\infty} e^{-n} \cos n$$

$$\mathbf{d.} \sum_{n=2}^{-\infty} \frac{1}{\sqrt{n} \ln^5 n} > n^{\frac{1}{2}}$$

Exercise 2 [10 points]: Evaluate the integral $\int_0^2 \int_0^1 \int_0^{1-x^2} \frac{\sin y}{\sqrt{1-y}} dy dx dz$.

Exercise 3 [16 points]: Let V be the volume of the smaller region cut from the bottom of the cone $z=\sqrt{x^2+y^2}$ by the plane z=3.

a. Express V as an iterated triple integral in spherical coordinates (that is, set up the limits of integration but do not evaluate the resulting integral).

b. Express V as an iterated triple integral in cylindrical coordinates, then evaluate the resulting integral to find V.

c. Find the plane z=c that divides the region into two parts of equal volume.

Exercise 4 [14 points]: Find the absolute minimum and maximum for the function $f(x,y) = x^2 + 4y^2 - y$ on the region $R = \{(x,y); x^2 + 4y^2 \le 1, y \ge 0\}$.

ind .

.

•

.

Exercise 5 [10 points]: Let V be the volume of the region whose vertices are (0,0,0),(1,2,0),(1,2,1),(0,2,0) and (0,2,1).

Express V as an iterated triple integrals in the following orders

a. order dzdxdy (do not evaluate the integral)

b. order dydzdx, then evaluate the integral

Exercise 6 [12 points]: Evaluate the integral

$$\int_0^1 \int_y^{2-y} e^{(x-y)/(x+y)} dxdy$$

by applying the transformation u = x - y and v = x + y.

Exercise 7 [16 points]:

a. Find the value of the line integral

$$\int_{(1,0,0)}^{(2,\pi/2,1)} (3x^2 + 2xz^2) dx + (7z\cos y) dy + (2x^2z + 7\sin y + e^z) dz$$

b. Find the counterclockwise circulation of the field $F(x,y) = (x + e^x \sin y)\mathbf{i} + (x + e^x \cos y)\mathbf{j}$ around the triangle whose vertices are (0,0), (1,0) and (0,1)

Exercise 8 [10 points]:

a. Show that $\lim_{(x,y)\to(0,0)}\cos\left(\frac{\pi xy^2}{x^2+y^4}\right)$ does not exist.

b. Let $\omega = f(x,y)$ be a differentiable function where x = r/s and y = s/r. Use the chain rule to find $\frac{\partial w}{\partial r}$ at (r,s) = (1,2).