NOTRE DAME UNIVERSITY Faculty of Engineering ECCE Department

EEN 331: Electromagnetics II

Midterm

2 December 2009

Duration: 1.5 hours

Closed Book

2 pages

Numerical answers required, where applicable SI System unless otherwise noted 6 points per part

Problem #1

The magnetic flux density is given by the expression $\mathbf{B} = 15.0 \text{ t } \mathbf{a}_z$ (T) where t is time in seconds.

At t=0, a square conducting loop is centered at the origin in the x-y plane with corners at A(0.1, 0.1, 0), B(-0.1, 0.1, 0), C(-0.1, -0.1, 0), D(0.1,-0.1,0) and has 10.0 Ω distributed resistance.

- 1.a Make a 3-D sketch showing the coordinate axes, the loop ABCD and the flux density B
- 1.b Determine the magnetic flux enclosed by the loop at any time 't' and at t=0.
- 1.c Determine the voltage induced at any time 't' and at time t=0, stating whether it is it is a transformer emf or a motional emf
- 1d Determine the magnitude of the current induced. State its direction between the two corners A and B, and justify
- 1-e The loop is rotated at a constant speed by an angle of 107.5° around the x-axis according to right hand rule: A to A', B to B', C to C' and D to D'. After the loop has reached its final position, determine the current and its direction between A' and B'

Continue	1.	1)
Continue	1/	1.4	4

1.f The loop reaches its final position in 1/3 (second). Determine the net voltage induced at any time t, for $0 \le t \le 1/3$, in seconds. Comment.

Problem # 2

The electric and magnetic field intensities of a uniform plane wave are given by:

 $E=300\pi \cos (15\pi 10^6 t - 0.08\pi y) a_z (V/m)$

and

 $H=4 \cos (15\pi 10^6 t - 0.08\pi y) a_x (A/m)$

- 2.a Determine the angular frequency, linear frequency and period of the wave
- 2.b Determine the velocity of propagation of the wave and direction of propagation
- 2.c Give the phasor form of E and H
- 2.d Determine the propagation constant, attenuation constant, phase constant and the wavelength of the wave
- 2.e Determine the intrinsic impedance of the medium and the nature of medium: conductor or lossy dielectric or perfect conductor
- 2.f Determine the conductivity, permittivity and permeability of the medium
- 2.g Determine the instantaneous Pointing vector and the time average power density
- 2.h Specify the polarization type of the wave and its direction at $t=0.25*10^{-6}$ (s) and y=0

Problem #3

A plane wave specified by $\mathbf{H}^i = 0.9 \cos(2\pi 10^7 \ t - \beta_i z + \pi/4) \ \mathbf{a}_y$ (A/m) is incident from a nonmagnetic, lossless, $\epsilon_r = 9$ medium (at z < 0) to a medium (z > 0) with $\sigma = 0.02$ (S/m), $\mu_r = 2.0$ and $\epsilon_r = 16.0$

- 3.a Determine E^t in the lossy magnetic medium
- 3.b Determine H^t in the lossy magnetic medium
- 3.c Determine what percentage of the average incident power is reflected