
CONTROLLER

16.10 Controller

Solution Assign the responsibility for receiving or handling a system event message to a
class representing one of the following choices:

� Represents the overall system, device, or subsystem (facade controller).

� Represents a use case scenario within which the system event occurs, often
named <UseCaseName>Handler, <UseCaseName>Coordinator, or
<Use-CaseName>Session (use-case or session controller).

o Use the same controller class for all system events in the same use
case scenario.

o Informally, a session is an instance of a conversation with an actor.
Sessions can be of any length, but are often organized in terms of
use cases (use case sessions).

Corollary: Note that "window," "applet," "widget," "view," and "document" classes
are not on this list. Such classes should not fulfill the tasks associated with system
events, they typically receive these events and delegate them to a controller.

Problem Who should be responsible for handling an input system event?

An input system event is an event generated by an external actor. They are
associated with system operations�operations of the system in response to
system events, just as messages and methods are related.

For example, when a cashier using a POS terminal presses the "End Sale" button,
he is generating a system event indicating "the sale has ended." Similarly, when a
writer using a word processor presses the "spell check" button, he is generating a
system event indicating "perform a spell check."

A Controller is a non-user interface object responsible for receiving or handling a
system event. A Controller defines the method for the system operation.

Example In the NextGen application, there are several system operations, as illustrated in
Figure 16.13, showing the system itself as a class or component (which is legal
in the UML).

237

Figure 16.13 System operations associated with the system events.

System

endSale()
enterItem()
makeNewSale()
makePayment()
. . .

Administrator
overall system

Administrator
device

Administrator
subsystem

Administrator
facade controller

Administrator
use-case or session controller

16 - GRASP: DESIGNING OBJECTS WITH RESPONSIBILITIES

Who should be the controller for system events such as enterltem and endSalel

Figure 16.14 Controller for enterltem?

By the Controller pattern, here are some choices:

represents the overall "system," device, or Register, POSSystem
subsystem
represents a receiver or handler of all system ProcessSaleHandler,
events of a use case scenario ProcessSaleSestsion

238

Which class of object should be responsible for receiving this
system event message?

It is sometimes called the controller or coordinator. It does not
normally do the work, but delegates it to other objects.

The controller is a kind of "facade" onto the domain layer from
the interface layer.

actionPerformed(actionEvent)

: ???

: Cashier

:SaleJFrame

presses button

enterItem(itemID, qty)

Interface
Layer

Domain
Layer

system event message

Administrator
 overall "system,"

Administrator
v

Administrator
device

Administrator
subsystem

Administrator
 receiver or handler of all system

Administrator
events of a use case scenario

Figure 16.15 Controller choices.

The choice of which of these classes is the most appropriate controller is influ-
enced by other factors, which the following section explores.

During design, the system operations identified during system behavior analysis
are assigned to one or more controller classes, such as Register, as shown in Figure
16.16.

Discussion Systems receive external input events, typically involving a GUI operated by a
person. Other mediums of input include external messages such as in a call pro-
cessing telecommunications switch, or signals from sensors such as in process
control systems.

In all cases, if an object design is used, some handler for these events must be
chosen. The Controller pattern provides guidance for generally accepted, suitable
choices. As illustrated in Figure 16.14, the controller is a kind of facade into the
domain layer from the interface layer.

It is often desirable to use the same controller class for all the system events of
one use case so that it is possible to maintain information about the state of the use
case in the controller. Such information is useful, for example, to identify
out-of-sequence system events (for example, a makePayment operation before an
endSale operation). Different controllers may be used for different use cases.

A common defect in the design of controllers is to give them too much responsi-
bility.

Normally, a controller should delegate to other objects the work that needs to be
done; it coordinates or controls the activity. It does not do much work itself.

Please see the "Issues and Solutions" section later for elaboration.

The first category of controller is a facade controller representing the overall
system, device, or a subsystem. The idea is to choose some class name that sug-
gests a cover, or facade, over the other layers of the application, and that provides
the main point of service calls from the UI layer down to other layers. It

239

CONTROLLER

In terms of interaction diagrams, it means that one of the examples in Figure
16.15 may be useful.

:RegisterenterItem(id, quantity)

:ProcessSaleHandlerenterItem(id, quantity)

Administrator
During design, the system operations identified during system behavior analysis
are assigned to one or more controller classe

Administrator
It is often desirable to use the same controller class for all the system events of
one use case so that it is possible to maintain information about the state of the use
case in the controlle

Administrator
The first category of controller is a facade controller representing the overall
system, device, or a subsystem. The idea is to choose some class name that sug-
gests a cover, or facade, over the other layers of the application, and that provides
the main point of service calls from the UI layer down to other layers. It

240

16 - GRASP: DESIGNING OBJECTS WITH RESPONSIBILITIES

could be an abstraction of the overall physical unit, such as a Register4,
TelecommSwitch, Phone, or Robot; a class representing the entire software sys-
tem, such as POSSystem, or any other concept which the designer chooses to
represent the overall system or a subsystem, even, for example, ChessGame if it
was game software.
Facade controllers are suitable when there are not "too many" system events, or it
is not possible for the user interface (UI) to redirect system event messages to
alternating controllers, such as in a message processing system.
If a use-case controller is chosen, then there is a different controller for each use
case. Note that this is not a domain object; it is an artificial construct to support
the system (a Pure Fabrication in terms of the GRASP patterns). For example, if
the NextGen application contains use cases such as Process Sale and Handle
Returns, then there may be a ProcessSaleHandler class and so forth.
When should you choose a use-case controller? It is an alternative to consider
when placing the responsibilities in a facade controller leads to designs with low
cohesion or high coupling, typically when the facade controller is becoming
"bloated" with excessive responsibilities. A use-case controller is a good choice
when there are many system events across different processes; it factors their
handling into manageable separate classes, and also provides a basis for knowing
and reasoning about the state of the current scenario in progress.
In the UP and Jacobson's older Objectory method [Jacobson92], there are the
(optional) concepts of boundary, control, and entity classes. Boundary objects
are abstractions of the interfaces, entity objects are the application-indepen-
dent (and typically persistent) domain software objects, and control objects
are use case handlers as described in this Controller pattern.
A important corollary of the Controller pattern is that interface objects (for
example, window objects or widgets) and the presentation layer should not have
responsibility for fulfilling system events. In other words, system operations
should be handled in the application logic or domain layers of objects rather
than in the interface layer of a system. See the "Issues and Solutions" section for
an example.
The Controller object is typically a client-side object within the same process as
the UI (for example, an application with a Java Swing GUI), and so is not
exactly applicable when the UI is a Web client in a browser, and there is
server-side software involved. In the latter case, there are various common
patterns of handling the system events that are strongly influenced by the chosen
server-side technical framework, such as Java servlets. Nevertheless, it is a
common idiom to create server-side use-case controllers with either a servlet for
each use case or an Enterprise JavaBeans (EJB) session bean for each use
case. The

4. Various terms are used for a physical POS unit, including register, point-of-sale terminal
(POST), and so forth. Over time, "register" has come to embody the notion of both a
physical unit, and the logical abstraction of the thing that registers sales and payments.

Administrator
could be an abstraction of the overall physical unit, such as a Register4,
TelecommSwitch, Phone, or Robot; a class representing the entire software sys-
tem, such as POSSystem, or any other concept which the designer chooses to
represent the overall system or a subsystem, even, for example, ChessGame if it
was game software.

Administrator
Facade controllers are suitable when there are not "too many" system events, or it
is not possible for the user interface (UI) to redirect system event messages to
alternating controllers, such as in a message processing system.

Administrator
A use-case controller is a good choice
when there are many system events across different processes; it factors their
handling into manageable separate classes, and also provides a basis for knowing
and reasoning about the state of the current scenario in progress.

Administrator
control objects
are use case handlers as described in this Controller pattern.

Administrator
Boundary objects
are abstractions of the interfaces, entity objects are the application-indepen-
dent (and typically persistent) domain software objects, and c

Administrator
interface objects

Administrator
and the presentation layer should not have
responsibility for fulfilling system events. In other words, system operations
should be handled in the application logic or domain layers of objects rather
than in the interface layer of a system

Administrator
it is a
common idiom to create server-side use-case controllers with either a servlet for
each use case or an Enterprise JavaBeans (EJB) session bean for each use
case.

CONTROLLER

server-side session object represents a "session" of interaction with an external
actor.

Register

...

endSale()
enterItem()
makeNewSale()
makePayment()

makeNewReturn()
enterReturnItem()
. . .

System

endSale()
enterItem()
makeNewSale()
makePayment()

makeNewReturn()
enterReturnItem()
. . .

system operations
discovered during system
behavior analysis

allocation of system
operations during design,
using one facade controller

ProcessSale
Handler

...

endSale()
enterItem()
makeNewSale()
makePayment()

System

endSale()
enterItem()
makeNewSale()
makePayment()

enterReturnItem()
makeNewReturn()
. . .

allocation of system
operations during design,
using several use case
controllers

HandleReturns
Handler

...

enterReturnItem()
makeNewReturn()
. . .

Figure 16.16 Allocation of system operations.

If the UI is not a web client (for example, it is a Swing or Windows GUI), but the
application calls on remote services, it is still common to use the Controller pattern.
The UI forwards the request to the local client-side Controller, and the Controller
may forward all or part of the request handling on to remote services. This design
lowers the coupling of the UI to remote services, and makes it easier, for example,
to provide the services either locally or remotely, through the indirection of the
client-side Controller.

To summarize, the Controller receives the service requests from the UI layer and
coordinates their fulfillment, usually by delegation to other objects.

241

Administrator
To summarize, the Controller receives the service requests from the UI layer and
coordinates their fulfillment, usually by delegation to other objects.

16 - GRASP: DESIGNING OBJECTS WITH RESPONSIBILITIES

Benefits � Increased potential for reuse, and pluggable interfaces�It ensures that
application logic is not handled in the interface layer. The responsibilities of a
controller could technically be handled in an interface object, but the
implication of such a design is that program code and logic related the ful-
fillment of application logic would be embedded in interface or window
objects. An interface-as-controller design reduces the opportunity to reuse
logic in future applications, since it is bound to a particular interface (for
example, window-like objects) that is seldom applicable in other applications.
By contrast, delegating a system operation responsibility to a controller
supports the reuse of the logic in future applications. And since the
application logic is not bound to the interface layer, it can be replaced with a
different interface.

� Reason about the state of the use case�It is sometimes necessary to ensure that
system operations occur in a legal sequence, or to be able to reason about
the current state of activity and operations within the use case that is
underway. For example, it may be necessary to guarantee that the
makePay-ment operation can not occur until the endSale operation has
occurred. If so, this state information needs to be captured somewhere; the
controller is one reasonable choice, especially if the same controller is used
throughout the use case (which is recommended).

Issues and
Solutions

Bloated Controllers

Poorly designed, a controller class will have low cohesion�unfocused and han-
dling too many areas of responsibility; this is called a bloated controller. Signs of
bloating include:

� There is only a single controller class receiving all system events in the sys
tem, and there are many of them. This sometimes happens if a facade con
troller is chosen.

� The controller itself performs many of the tasks necessary to fulfill the sys
tem event, without delegating the work. This usually involves a violation of
Information Expert and High Cohesion.

� A controller has many attributes, and maintains significant information
about the system or domain, which should have been distributed to other
objects, or duplicates information found elsewhere.

242

There are several cures to a bloated controller, including:

1. Add more controllers�a system does not have to have only one. Instead of
facade controllers, use use-case controllers. For example, consider an appli-
cation with many system events, such as an airline reservation system.

CONTROLLER

It may contain the following controllers:

Use-case controllers

MakeReservationHandler

ManageSchedulesHandler

ManageFaresHandler

2. Design the controller so that it primarily delegates the fulfillment of
each system operation responsibility on to other objects.

Interface Layer Does Not Handle System Events

To reiterate: an important corollary of the Controller pattern is that interface
objects (for example, window objects) and the interface layer should not have
responsibility for handling system events. As an example, consider a design in
Java that uses a JFrame to display the information.

Assume the NextGen application has a window that displays sale information
and captures cashier operations. Using the Controller pattern, Figure 16.17
illustrates an acceptable relationship between the JFrame and Controller and
other objects in a portion of the POS system (with simplifications).

Notice that the SaleJFrame class—part of the interface layer—passes the
enter-Item message to the Register object. It did not get involved in processing
the operation or deciding how to handle it; the window only delegated it to
another layer.

Assigning the responsibility for system operations to objects in the application
or domain layer—using the Controller pattern rather than the interface layer
supports increased reuse potential. If an interface layer object (like the SaleJ-
Frame) handles a system operation—which represents part of a business pro-
cess—then business process logic would be contained in an interface (for
example, window-like) object, which has low opportunity for reuse because of its
coupling to a particular interface and application.

Consequently, the design in Figure 16.18 is undesirable.

Placing system operation responsibility in a domain object controller makes it
easier to reuse the program logic supporting the associated business process in
future applications. It also makes it easier to unplug the interface layer and use
a different interface framework or technology, or to run the system in an offline
"batch" mode.

243

