FINAL EXAMINATION

MATH 201
January 24, 2008; 11:30 A.M.-1:30 P.M.

Name:

Circle Your Section Number:
17.

18
19
20
24
25

Instructions:

- There are two types of questions:

PART I consists of six work-out problems. Give detailed solutions.
PART II consists of eight multiple-choice questions each with exactly one correct answer. Circle the appropriate answer.

Grading policy:

- 10 points for each problem of PART I.
- 5 points for each problem of PART II.
- 0 point for no, wrong, or more than one answer of PART II.

GRADE OF PART I	$/ 60$
GRADE OF PART II	$/ 40$
TOTAL GRADE	$/ 100$

Part I (1). Use Lagrange Multipliers to find the absolute maximum and minimum values for the function $f(x, y, z)=x-y+z$ on the unit sphere $x^{2}+y^{2}+z^{2}-1=0$.

Part I (2). Use cylindrical coordinates to find the volume of the solid bounded above by the surface $z=e^{\sqrt{x^{2}+y^{2}}}$, below by the $x y-$ plane, and laterally by the cylinder $x^{2}+y^{2}=1$.

Part I (3). Find the absolute maximum and minimum values of the function $f(x, y)=x^{2}+3 y-3 x y$ over the triangular region R bounded by the $x-$ axis, the y-axis, and the line $x+y=6$.

Part I (4). Evaluate the integral

$$
\iint_{R} \frac{2 y+x}{y-2 x} d A
$$

where R is the trapezoid with vertices $(-1,0),(-2,0),(0,4)$, and $(0,2)$, by using the substitution $u=y-2 x$ and $v=2 y+x$.

Part I (5). Integrate the function $f(x, y)=\sqrt{x^{2}+y^{2}}$ over the parametric curve $C: \quad \overrightarrow{\mathbf{r}}(t)=(\cos t+t \sin t) \overrightarrow{\mathbf{i}}+(\sin t-t \cos t) \overrightarrow{\mathbf{j}}, \quad 0 \leq t \leq \sqrt{3}$.

Part I (6). Sketch the region of integration of the integral

$$
\int_{0}^{4} \int_{\sqrt{y}}^{2} x^{3} \cos (x y) d x d y
$$

and evaluate the integral by reversing its order of integration.

Part II (1). If $f(x, y)$ satisfies Laplace's equation $f_{x x}+f_{y y}=0$, then the value of the integral $\int_{C} f_{y} d x-f_{x} d y$ over all simple closed curves C to which Green's theorem applies is
(a) 0 .
(b) 1 .
(c) -1 .
(d) π.
(e) $-\pi$.

Part II (2). The mass of the annular metal plate bounded by the circles $r=1$ and $r=2$ and whose density function is $\delta(r, \theta)=\cos ^{2} \theta$ is
(a) $\pi / 4$.
(b) $\pi / 2$.
(c) $3 \pi / 4$.
(d) $3 \pi / 2$.
(e) None of the above.

Part II (3). The volume of the solid lying below the half-cone $z=\sqrt{x^{2}+y^{2}}$ and inside the sphere $x^{2}+y^{2}+z^{2}=8$ is given by the triple integral
(a) $\int_{0}^{2 \pi} \int_{\pi / 4}^{\pi} \int_{0}^{2 \sqrt{2}} \rho^{2} \sin \phi d \rho d \phi d \theta$.
(b) $\int_{0}^{2 \pi} \int_{\pi / 3}^{\pi / 4} \int_{0}^{2 \sqrt{2}} \rho \sin ^{2} \phi d \rho d \phi d \theta$.
(c) $\int_{0}^{2 \pi} \int_{\pi / 4}^{\pi / 2} \int_{0}^{2} \rho^{2} \sin \phi d \rho d \phi d \theta$.
(d) $\int_{0}^{\pi} \int_{\pi / 4}^{\pi} \int_{0}^{2} \rho^{2} \sin \phi d \rho d \phi d \theta$.
(e) None of the above.

Part II (4). If

$$
a_{n}=\left\{\begin{array}{cc}
1 / \sqrt{n} ; \quad 1 \leq n \leq 100 \\
(-1)^{n} / n ; \quad n>100
\end{array}\right.
$$

then the series $\sum_{n=1}^{\infty} a_{n}$ is
(a) convergent.
(b) absolutely convergent.
(c) conditionally convergent.
(d) divergent.
(e) None of the above.

Part II (5). The power series

$$
\sum_{k=2}^{\infty}(-1)^{k} \frac{(2 x-1)^{k}}{k 6^{k}}
$$

has interval of absolute convergence
(a) $-5 / 2<x \leq 7 / 2$.
(b) $-5 / 2<x<7 / 2$.
(c) $-5 / 2 \leq x<7 / 2$.
(d) $-5 / 2 \leq x \leq 7 / 2$.
(e) None of the above.

Part II (6). The directional derivative of the function

$$
f(x, y, z)=x^{2}+4 y^{2}-9 z^{2}
$$

at the point $P(3,0,-4)$ in the direction from P to the origin is
(a) 52 .
(b) -52 .
(c) 54 .
(d) -54 .
(e) None of the above.

Part II (7) The function $f(x, y)=x^{2}-4 x y+y^{3}+4 y$
(a) has local minimum at $(4,2)$ and local maximum at $(4 / 3,2 / 3)$.
(b) has local minimum at $(4,2)$ and saddle point at $(4 / 3,2 / 3)$.
(c) has local maximum at $(4,2)$ and saddle point at $(4 / 3,2 / 3)$.
(d) has saddle point at $(4,2)$ and local minimum at $(4 / 3,2 / 3)$.
(e) None of the above.

Part II (8) An equation of the tangent plane to the surface $2 x^{2}-y+5 z^{2}=0$ at the point $(1,7,1)$ is
(a) $3 x-y+z=-3$.
(b) $x+y+2 z=10$.
(c) $10 x-y+4 z=7$.
(d) $4 x-y+10 z=7$.
(e) None of the above.

