American University of Beirut
 MATH 201

Calculus and Analytic Geometry III
Fall 2007-2008

Final Exam

Name: \qquad ID \#:
Exercise 1 (12 points) Discuss the convergence of the following series:
a) $\sum_{n=0}^{+\infty} \frac{1}{\sqrt{n!}}$
b) $\sum_{n=0}^{+\infty} \frac{n+10}{n \ln ^{3} n}$
c) $\sum_{n=0}^{+\infty}(-1)^{n^{2}} \frac{1}{n^{2}+\sqrt{n}}$

Exercise 2 (10 points) If $w=f(x, y)$ is differentiable and $x=r+s, y=r-s$, show that

$$
\frac{\partial w}{\partial r} \times \frac{\partial w}{\partial s}=\left(\frac{\partial f}{\partial x}\right)^{2}-\left(\frac{\partial f}{\partial y}\right)^{2}
$$

Exercise 3 (15 points) Find the absolute extrema of $f(x, y)=5+4 x-2 x^{2}+3 y-y^{2}$ on the region R bounded by the lines $y=2, y=x$, and $y=-x$.

Exercise 4 (8 points) Use Lagrange multipliers to find the maximum and minimum of $f(x, y)=$ $4 x y$ subject to $x^{2}+y^{2}=8$.

Exercise 5 (15 points) Evaluate the integral $\int_{0}^{2} \int_{0}^{4-x^{2}} \int_{0}^{x} \frac{\sin (2 z)}{4-z} d y d z d x$
Exercise 6 (10 points)
Evaluate the integral $\iint_{D} \cos \left(x^{2}+y^{2}\right) d A$, where $D=\left\{(x, y) \in \mathbb{R}^{2} ; 1 \leq x^{2}+y^{2} \leq 2, y \geq 0\right\}$
Exercise 7 (20 points) Let V be the volume of the region D that is bounded form below by the plane $z=0$, from above by the sphere $x^{2}+y^{2}+z^{2}=4$ and on the sides by the cylinder $x^{2}+y^{2}=1$
a. express V as an iterated triple integral cartesian coordinates in the order $d z d y d x$
b. express V as an iterated triple integral cartesian coordinates in the order $d y d z d x$
c. express V as an iterated triple integral spherical coordinates
d. express V as an iterated triple integral cylindrical coordinates, then evaluate the resulting integral.

Exercise 8 (10 points) Set up an integral in rectangular coordinates equivalent to the integral

$$
\int_{0}^{\pi / 2} \int_{1}^{\sqrt{3}} \int_{1}^{\sqrt{4-r^{2}}} r^{3}(\sin \theta \cos \theta) z^{2} d z d r d \theta
$$

(do not evaluate the integral)

