American University of Beirut MATH 201 Calculus and Analytic Geometry III Fall 2007-2008

Final Exam

Name:

ID #:

Exercise 1 (12 points) Discuss the convergence of the following series:

a)
$$\sum_{n=0}^{+\infty} \frac{1}{\sqrt{n!}}$$
 b) $\sum_{n=0}^{+\infty} \frac{n+10}{n \ln^3 n}$ c) $\sum_{n=0}^{+\infty} (-1)^{n^2} \frac{1}{n^2 + \sqrt{n}}$

Exercise 2 (10 points) If w = f(x, y) is differentiable and x = r + s, y = r - s, show that

$$\frac{\partial w}{\partial r} \times \frac{\partial w}{\partial s} = \left(\frac{\partial f}{\partial x}\right)^2 - \left(\frac{\partial f}{\partial y}\right)^2$$

Exercise 3 (15 points) Find the absolute extrema of $f(x, y) = 5 + 4x - 2x^2 + 3y - y^2$ on the region R bounded by the lines y = 2, y = x, and y = -x.

Exercise 4 (8 points) Use Lagrange multipliers to find the maximum and minimum of f(x, y) = 4xy subject to $x^2 + y^2 = 8$.

Exercise 5 (15 points) Evaluate the integral $\int_0^2 \int_0^{4-x^2} \int_0^x \frac{\sin(2z)}{4-z} \, dy \, dz \, dx$

Exercise 6 (10 points) Evaluate the integral $\int \int_D \cos(x^2 + y^2) dA$, where $D = \{(x, y) \in \mathbb{R}^2; 1 \le x^2 + y^2 \le 2, y \ge 0\}$

Exercise 7 (20 points) Let V be the volume of the region D that is bounded form below by the plane z = 0, from above by the sphere $x^2 + y^2 + z^2 = 4$ and on the sides by the cylinder $x^2 + y^2 = 1$

- **a.** express V as an iterated triple integral cartesian coordinates in the order dzdydx
- **b.** express V as an iterated triple integral cartesian coordinates in the order dydzdx
- c. express V as an iterated triple integral spherical coordinates
- **d.** express V as an iterated triple integral cylindrical coordinates, then evaluate the resulting integral.

Exercise 8 (10 points) Set up an integral in rectangular coordinates equivalent to the integral

$$\int_{0}^{\pi/2} \int_{1}^{\sqrt{3}} \int_{1}^{\sqrt{4-r^{2}}} r^{3} (\sin \theta \cos \theta) z^{2} dz dr d\theta$$

(do not evaluate the integral)