FINAL EXAMINATION

MATH 201

January 24, 2008, 11:30-1:30pm

Name:
Student number:
Section number (Encircle): $21 \quad 22 \quad 23$
Instructions:

- No calculators are allowed.
- There are two types of questions:

Part I consists of ten multiple choice questions out of 5 points each with exactly one correct answer.

Part II consists of five work-out problems out of 10 points each. Give a detailed solution for each of these problems.

Part I:

1 - The series $\sum_{n=2}^{\infty} \frac{(-1)^{n}}{n l n n}$:
a. Converges absolutely
b. Converges conditionally
c. Diverges
2. The interval of convergence of the power series $\sum_{n=1}^{\infty} \frac{(x+\pi)^{n}}{\sqrt{n}}$ is:
a. $]-1-\pi, 1-\pi[$
b.] $-1-\pi, 1-\pi$]
c. $[-1-\pi, 1-\pi[$
d. $[-1-\pi, 1-\pi]$
e. None of the above
3. The Maclaurin series of the function $\int_{1}^{x} \frac{\ln (1-t)}{t} d t$ is:
a. $-\sum_{n=0}^{\infty} \frac{x^{n+1}}{(n+1)^{2}}$
d. $-\sum_{n=1}^{\infty} \frac{x^{n+1}}{n(n+1)}$
b. $-\sum_{n=1}^{\infty} \frac{x^{n+1}}{(n+1)^{2}}$
e. None of the above.
c. $-\sum_{n=0}^{\infty} \frac{x^{n}}{n(n+1)}$
4. The function $f(x, y, z)$ at a point P decreases most rapidly in the direction of $v=i-2 j+3 k$. In this direction the value of the derivative is $-5 \sqrt{14}$. The ∇f is:
a. $-5 \sqrt{14} i+10 \sqrt{14} j-15 \sqrt{14} k$
b. $5 \sqrt{14} i-10 \sqrt{14} j+15 \sqrt{14} k$
c. $-5 i+10 j-15 k$
d. $5 i-10 j+15 k$
e. None of the above
5. The critical point(s) of $f(x, y)=e^{\left(x^{2}+y^{2}\right)}\left(2 x^{2}-y^{2}\right)$ is (are):
a. $(0,0)$
b. $(0,0),\left(\pm \frac{1}{\sqrt{2}}, 0\right)$
c. $(0,0),(0, \pm \sqrt{2})$
d. $(0,0),\left(\pm \frac{1}{\sqrt{2}}, 0\right),(0, \pm \sqrt{2})$
e. None of the above
6. Let C be a simple closed curve, then $\int_{C}(x+y) d x+\left(x^{2}-y^{2}\right) d y$ is the expression of:
a. The counterclockwise circulation of the field
$F=\left(x^{2}-y^{2}\right) i+(x+y) j$ around C .
b. The counterclockwise circulation of the field
$F=\left(x^{2}-y^{2}\right) i-(x+y) j$ around C.
c. The outward flux of the field
$F=(x+y) i+\left(x^{2}-y^{2}\right) j$ across C
d. The outward flux of the field
$F=\left(x^{2}-y^{2}\right) i-(x+y) j$ across C .
e. None of the above
7. Use the chain rule to compute $\frac{\partial w}{\partial s}$ when $w=f(x, y, z)$, $x=2 s+t^{2}, y=t u$, and $z=u^{2}-s^{2}$:
a. $\frac{\partial w}{\partial s}=\left(2 s+t^{2}\right) \frac{\partial w}{\partial x}+t u \frac{\partial w}{\partial y}+\left(u^{2}-s^{2}\right) \frac{\partial w}{\partial z}$
b. $\frac{\partial w}{\partial s}=2 \frac{\partial w}{\partial x}-2 s \frac{\partial w}{\partial z}$
c. $\frac{\partial w}{\partial s}=t \frac{\partial w}{\partial y}+2 u \frac{\partial w}{\partial z}$
d. $\frac{\partial w}{\partial s}=t u \frac{\partial w}{\partial y}+\left(u^{2}-s^{2}\right) \frac{\partial w}{\partial z}$
e. None of the above
8. The value of the double integral $\int_{0}^{2} \int_{y / 2}^{1} 3 y e^{x^{3}} d x d y$ is:
a. $2(e-1)$
b. $\frac{9}{2}(e-1)$
c. $\frac{25}{2}(e-1)$
d. $8(e-1)$
e. None of the above
9. Let D be the region bounded by the paraboloids $z=8-x^{2}-y^{2}$ and $z=x^{2}+y^{2}$. The volume of D in rectangular coordinates is expressed by the following iterated integral:
a. $\int_{0}^{4} \int_{-\sqrt{z}}^{\sqrt{z}} \int_{-\sqrt{8-z-x^{2}}}^{\sqrt{8-z x^{2}}} d y d x d z+\int_{4}^{8} \int_{-\sqrt{8-z}}^{\sqrt{8-z}} \int_{-\sqrt{z-x^{2}}}^{\sqrt{z-x^{2}}} d y d x d z$
b. $\int_{0}^{4} \int_{-\sqrt{8-z}}^{\sqrt{8-z}} \int_{-\sqrt{z-x^{2}}}^{\sqrt{z-x^{2}}} d y d x d z+\int_{4}^{8} \int_{-\sqrt{z}}^{\sqrt{z}} \int_{-\sqrt{8-z-x^{2}}}^{\sqrt{8-z-x^{2}}} d y d x d z$
c. $\int_{0}^{4} \int_{-\sqrt{8-z}}^{\sqrt{8-z}} \int_{-\sqrt{8-z-x^{2}}}^{\sqrt{8-z-x^{2}}} d y d x d z+\int_{4}^{8} \int_{-\sqrt{z}}^{\sqrt{z}} \int_{-\sqrt{z-x^{2}}}^{\sqrt{z-x^{2}}} d y d x d z$
d. $\int_{0}^{4} \int_{-\sqrt{z}}^{\sqrt{z}} \int_{-\sqrt{z-x^{2}}}^{\sqrt{z-x^{2}}} d y d x d z+\int_{4}^{8} \int_{-\sqrt{8-z}}^{\sqrt{8-z}} \int_{-\sqrt{8-z-x^{2}}}^{\sqrt{8-z x^{2}}} d y d x d z$
e. None of the above
10. The value of the integral $I=\int_{0}^{\infty} e^{-x^{2}} d x$ is: (Hint: Compute $\left.I^{2}=\left(\int_{0}^{\infty} e^{-x^{2}} d x\right)\left(\int_{0}^{\infty} e^{-x^{2}} d x\right)\right)$.
a. $\frac{\pi}{4}$
b. $\frac{\sqrt{\pi}}{2}$
c. $\sqrt{\frac{\pi}{2}}$
d. $\frac{\pi}{2}$
e. None of the above

Part II

I- (10 points) Use the transformation $u=x-y$ and $v=x+y$ to evaluate the double integral:

$$
\iint_{R}(x-y)^{2} \cos ^{2}(x+y) d A
$$

over the region R bounded by the lines: $x-y=1, x-y=-1$, $x+y=1$ and $x+y=3$.

II- (10 points) Use the method of Lagrange Multipliers to find the dimensions of the rectangle of greatest area that can be inscribed in the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$.

III- (10 points) Let D be the region bounded by below by the $x y$-plane, laterally by the cylinder $x^{2}+y^{2}=9$, and above by the sphere $x^{2}+y^{2}+z^{2}=25$. Set up, but do not evaluate, the triple integral in cylindrical and spherical coordinates that represents the volume of D.

IV- (10 points) Consider the vector field

$$
F=(y+z) i+(x-2 y) j+x k
$$

a- Verify that the field is conservative.
b- Find a potential function $f(x, y, z)$ for F. c- Use part b- to evaluate the work over C where C is a smooth curve whose inital point is $(3,-2,1)$ and the terminal point is (-1,1,2)
d- Evaluate the work by finding parametrization for the segment that make up C.

V- (10 points) Let C be the closed curve in the plane starting from $(0,0)$ which first goes to $(1,1)$ along the parabola $y=$ x^{2} and then returns to $(0,0)$ along the line $y=x$. Compute $\int_{C} y d x+e^{y} d y$ twice:
a) directly
b) using Green's theorem

