Notre Dame University

Faculty of Applied and Natural Science Computer Organization & Assembly Language. CSC 222 Midterm Exam 16 May 2002

1.	Answer by writing [I rue or False in the corresponding box: (8 points)	

a)	A microopearation is a term that describes samll and fast operations.	
b)	$DR \leftarrow M[AR]$ represents a write operation.	
c)	You cannot get an overflow when you're adding or subtracting unsigned numbers.	
d)	The ALU of a computer is usually made of Sequential circuits and not combinational logic.	

2. The binary values of register A=11110010 and B= 10101110. Write the register transfer language for each operation and show the corresponding results where applicable in the following table:

(20 points)

Operation	Register Transfer Language	Result of Operation
An Arithmetic shift right of Register A.		
Followed by a Logic shift right.		
AND A with B. (Result in A)		
XOR A with B. (Result in A)		
	$D \leftarrow A + \overline{B} + 1$	
	$D \leftarrow \overline{B}$	

3. Perform the following conversions:

(24 points)

Decimal	Binary	Hexadecimal	Octal	BCD
17.25				
	11001010.001			

4. Derive the following (r)'s complement and (r-1)'s complement for the following numbers: (12 points)

	r's Complement	(r-1)'s complement	
(1352700)8	:		
$(0000000)_{10}$			

5. Write the following numbers using <u>16 digits</u> in the following bases:

(6 points)

	Number	Result	
Base 16	- 3DCA09		
Base 8	- 6542170		

6. Perform the subtractions with the following UNSIGNED numbers:

(10 *Points*)

- 7. Draw the circuit diagram of a shift circuit that selects and generates arithmetic shift right and arithmetic shift left operations. Explain! (10 points)
- 8. Design a 2-bit logic circuit capable of generating any of the following 4 logic functions:

(10 points)

Boolean Function	Name
F_1	Set to all 1's
F_2	Clear
F_3	NAND
F_4	Complement

Good Luck