FINAL EXAM.; MATH 201

January 28, 2004

Name: Signature:
Student number:

Section number (Encircle):
17 (Miss Jaafar) 18 (Miss Jaafar) 19 (Mrs. Jurdak) 20 (Mr. Lyzzaik) Instructor: Prof. Abdallah Lyzzaik

1. Instructions:

- Calculators are allowed.
- There are two types of questions: PART I consists of six subjective questions, and PART II consists of seven multiple-choice questions of which each has exactly one correct answer.
- GIVE DETAILED SOLUTIONS FOR THE PROBLEMS OF PART I IN THE PROVIDED SPACE AND CIRCLE THE APPROPRIATE ANSWER FOR EACH PROBLEM OF PART II.

2. Grading policy:

- 12 points for each problem of PART I.
- 4 points for each problem of PART II: 0 point for no answer, -1 for a wrong answer or more than one answer of PART II.

GRADE OF PART I/72:
GRADE OF PART II/28:
TOTAL GRADE/100:

Part I (1). Find the absolute maximum and minimum values attained by the function $f(x, y)=x y-x-y+3$ on the triangular region R in the $x y$-plane with vertices $(0,0),(2,0)$, and $(0,4)$.

Part I (2). Evaluate the integral

$$
\int_{0}^{2} \int_{y / 2}^{1} y e^{x^{3}} d x d y
$$

Part I (3). Set up a triple integral (without evaluating it) in cylindrical coordinates for the volume of the solid bounded by the $x y$-plane, the cylinder $r^{2}=\cos 2 \theta$, and the sphere $x^{2}+y^{2}+z^{2}=1$.

Part I (4). Evaluate the integral

$$
\iint_{R} \sin \left(\frac{y-x}{y+x}\right) d x d y
$$

where R is the trapezoid in the $x y$-plane with vertices $(1,1),(2,2),(4,0)$, and $(2,0)$, by making the change of variables: $u=y-x, v=y+x$.

Part I (5). Evaluate the line integral

$$
\oint_{C} 3 x y d x+2 x^{2} d y,
$$

where C is the boundary of the region R bounded above by the line $y=x$ and below by the parabola $y=x^{2}-2 x$. Interpret this integral in terms of vector fields.

Part I (6). Find the interval of convergence of the power series

$$
\sum_{n=2}^{\infty} \frac{(2 x-1)^{n}}{\ln n} .
$$

State where the series converges absolutely and conditionally.

Part II

1. If $f(x, y)=2 x^{2} y /\left(x^{4}+y^{2}\right)$, then
(a) $\lim _{(x, y) \rightarrow(0,0)} f(x, y)=0$.
(b) $\lim _{(x, y) \rightarrow(0,0)} f(x, y)=1$.
(d) $\lim _{(x, y) \rightarrow(0,0)} f(x, y)$ does not exist.
(c) $\lim _{(x, y) \rightarrow(0,0)} f(x, y)=2$.
(e) None of the above.
2. An estimate of the integral

$$
\int_{0}^{1} \frac{1-\cos x}{x^{2}} d x
$$

with an error less than $1 /(6!5)$ is
(a) $1 / 2!+1 /(4!3)$.
(b) $1 / 2!-1 /(4!3)$.
(c) $1 / 2!-1 /(4!3)+1 /(6!5)$.
(d) $-1 / 2!+1 /(4!3)-1 /(6!5)$.
(e) None of the above.
3. The function defined by

$$
f(x, y)=\tan \left(\frac{x^{3}-y^{3}}{x^{2}+y^{2}}\right)
$$

for $(x, y) \neq(0,0)$, and $f(0,0)=0$
(a) has no limit at $(0,0)$.
(b) has a limit at $(0,0)$ but is discontinuous at $(0,0)$.
(c) is continuous at $(0,0)$.
(d) is bounded in the $x y$-plane.
(e) None of the above.
4. If $w=f(x, y)$ where $x=e^{r} \cos \theta$ and $y=e^{r} \sin \theta$, then
(a) $w_{x x}+w_{y y}=-w_{r r}+w_{r} / r+w_{\theta \theta} / r^{2}$.
(b) $w_{x x}+w_{y y}=w_{r r}+w_{r} / r-w_{\theta \theta} / r^{2}$.
(c) $w_{x x}+w_{y y}=w_{r r}-w_{r} / r+w_{\theta \theta} / r^{2}$.
(d) $w_{x x}+w_{y y}=w_{r r}+w_{r} / r+w_{\theta \theta} / r^{2}$.
(e) None of the above.
5. An equation of the tangent plane to the surface with equation $z^{3}+x z-y^{2}=$ 1 at the point $(1,3,2)$ is
(a) $2 x-6 y+13 z=10$.
(b) $2 x+6 y+13 z=10$.
(c) $2 x+6 y-13 z=10$.
(d) $2 x-6 y+13 z=-10$.
(e) None of the above.
6. The volume of the solid bounded by the cylinder $y=x^{2}$ and the planes $y+z=4$ and $z=0$ is given by the triple integral
(a) $\int_{0}^{4} \int_{0}^{4-y} \int_{-\sqrt{y}}^{\sqrt{y}} d x d y d z$.
(b) $\int_{0}^{4} \int_{0}^{4-z} \int_{-\sqrt{y}}^{\sqrt{y}} d x d y d z$.
(c) $2 \int_{0}^{4} \int_{\sqrt{y}}^{2} \int_{0}^{4-y} d z d x d y$.
(d) $\int_{-2}^{2} \int_{0}^{x^{2}} \int_{0}^{4-y} d z d y d x$.
(e) None of the above.
7. The function $f(x, y)=x^{3}+3 x y-y^{3}$ admits
(a) a saddle point and no local minimum value.
(b) a local minimum value and no saddle point.
(c) a saddle point and a local minimum value.
(d) no saddle point and no local minimum value.
(e) None of the above.

