FINAL EXAM.; MATH 201

February 6, 1998; 8:00-10:00 A.M.

• No calculators are allowed.

• There are two types of questions: **PART I** consisting of four subjective questions, and **PART II** consisting of twelve multiple-choice questions of which each has exactly one correct answer.

• GIVE DETAILED SOLUTIONS FOR THE PROBLEMS OF **PART** I IN THE PROVIDED SPACE AND CIRCLE THE APPROPIATE AN-SWERS FOR THE PROBLEMS OF **PART II**.

2. Grading policy:

- 10 points for each problem of **PART I**.
- 5 points for each problem of **PART II**.
- \bullet 0 point for no answer, wrong answer, or more than one answer of **PART**

II.

GRADE OF PART I/40:

GRADE OF PART II/60:

TOTAL GRADE/100:

Part I(1). Find the absolute maximum and minimum values of the function $f(x, y) = x^3 + 3xy - y^3$ on the triangular region R with vertices (1, 2), (1, -2), and (-1, -2).

Part I(2). Evaluate the integral

$$\int_0^1 \int_x^{\sqrt{x}} e^{x/y} dy dx.$$

Part I(3). Set up a triple integral (without evaluating it)in cylindrical coordinates for the volume of the solid bounded by the xy-plane, the cylinder $r = 1 + \sin \theta$, and the plane x + y + z = 2.

Part I(4). Find the interval of convergence of the power series

$$\sum_{n=1}^{\infty} \frac{1}{n5^n} (x-5)^n.$$

State where the series converges absolutely and conditionally.

Part II

1. The area of the region lying outside the circle r = 3 and inside the cardioid $r = 2(1 + \cos\theta)$ is (a) $\frac{9}{2}\sqrt{3} - \pi$. (b) $\frac{9}{2}\sqrt{3} + \pi$. (c) $9\sqrt{3} + \pi/2$. (d) $9\sqrt{3} - \pi/2$. (e) None of the above.

2. The slope of the tangent line to the curve $r = 8\cos 3\theta$ at the point of the graph corresponding to $\theta = \pi/4$ is

(a) 2.
(b) -2.
(c) 0.
(d) 1.
(e) None of the above.

3. If $f(x, y) = \frac{x^3 y^2}{x^4 + y^8}$ for $(x, y) \neq (0, 0)$ and f(0, 0) = 0, then (a) $\lim_{(x,y)\to(0,0)} f(x, y) = 1/2$. (b) f is discontinuous at (0,0). (c) $\lim_{(x,y)\to(0,0)} f(x, y) = 0$. (d) $\lim_{(x,y)\to(1,-1)} f(x, y) = 2$.

(e) None of the above.

4. An estimate to four decimal places of the value of the integral

$$\int_{0}^{0.1} x^2 e^{-x^2} dx \quad \text{is}$$

- (a) 10^{-4} . (b) 2×10^{-4} .
- . .
- (c) 5×10^{-4} .
- (d) 3×10^{-4} .
- (e) None of the above.
- 5. The Maclaurin series of the integral

$$\begin{split} &\int_0^x \sqrt[3]{1+t^2} dt \quad \text{is} \\ (\text{a}) \ \sum_{n=1}^\infty \frac{(\frac{1}{3})(\frac{1}{3}-1)\cdots(\frac{1}{3}-n+1)}{n!(2n+1)} x^{2n+1}. \\ (\text{b}) \ x+\sum_{n=1}^\infty \frac{(\frac{1}{3})(\frac{1}{3}-1)\cdots(\frac{1}{3}-n+1)}{n!(2n+1)} x^{2n+1}. \\ (\text{c}) \ x-\sum_{n=1}^\infty \frac{(\frac{1}{3})(\frac{1}{3}-1)\cdots(\frac{1}{3}-n+1)}{n!(2n+1)} x^{2n+1}. \\ (\text{d}) \ x+\sum_{n=1}^\infty \frac{(\frac{1}{3})(\frac{1}{3}-1)\cdots(\frac{1}{3}-n+1)}{(2n+1)} x^{2n+1}. \end{split}$$

(e) None of the above.

6. If $a_n = (\frac{7}{2})^n + \frac{e^n}{n!}$ and $b_n = n^2(e^{1/n^2} - 1)$, then

- (a) the sequences $\{a_n\}$ and $\{b_n\}$ diverge.
- (b) the sequences $\{a_n\}$ and $\{b_n\}$ converge.
- (c) the sequence $\{a_n\}$ diverges and $\{b_n\}$ converges.
- (d) the sequence $\{a_n\}$ converges and $\{b_n\}$ diverges.
- (e) None of the above.

7. The sum of the series

$$\sum_{n=0}^{\infty} \left[(-1)^n \frac{(\pi/2)^{2n+1}}{(2n+1)!} + \frac{n}{3^{n-1}} \right] \text{ is }$$

- (a) 15/4.
- (b) 5/4
- (c) 7/4
- (d) 13/4
- (e) None of the above.

8. The function defined by $f(x,y) = \cos\left(\frac{x^3-y^3}{x^2+y^2}\right)$ for $(x,y) \neq (0,0)$, and f(0,0) = 1

- (a) has no limit at (0,0).
- (b) has a limit at (0,0) but is not continuous at (0,0).
- (c) is continuous at (0,0).
- (d) is unbounded.
- (e) None of the above.
- 9. If z = f(x, y) where $x = e^r \cos\theta$ and $y = e^r \sin\theta$, then
 - (a) $f_x^2 f_y^2 = e^{-2r}(f_r^2 f_{\theta}^2).$ (b) $f_x^2 + f_y^2 = e^{-2r}(f_r^2 + f_{\theta}^2).$ (c) $f_x^2 + f_y^2 = e^{2r}(f_r^2 - f_{\theta}^2).$ (d) $f_x^2 + f_y^2 = e^{2r}(f_r^2 + f_{\theta}^2).$
 - (e) None of the above.

10. An equation of the tangent plane to the ellipsoid $\frac{3}{4}x^2 + 3y^2 + z^2 = 12$ at the point $P(2, 1, \sqrt{6})$ is

(a) $3x - 6y + 2\sqrt{6}z = 12$. (b) $3y - 6x + 2\sqrt{6}z = 3$. (c) $3y + 6x + 2\sqrt{6}z = 27$. (d) $3x + 6y + 2\sqrt{6}z = 24$. (e) None of the above.

11. If the directional derivatives of f(x, y) at the point P(1, 2) in the direction of the vector $\mathbf{i} + \mathbf{j}$ is $2\sqrt{2}$ and in the direction of the vector $-2\mathbf{j}$ is -3, then f increases most rapidly at P in the direction of the vector

(a) 3i - j.
(b) 3i + j.
(c) i - 3j.
(d) i + 3j.

(e) None of the above.

12. The function $f(x,y) = \frac{1}{3}x^3 + \frac{4}{3}y^3 - x^2 - 3x - 4y - 3$ admits

- (a) a local maximum value 4/3.
- (b) a local minimum value -42/3.
- (c) a saddle point (3, 1, f(3, 1)).
- (d) an absolute maximum value f(1, 1).
- (e) None of the above.