February 6, 1998; 8:00-10:00 A.M.

Name: Signature:
Student number:
Section number (Encircle): $310 \quad 11 \quad 12$
Instructors (Encircle): Prof. H. Abu-Khuzam Prof. A. Lyzzaik

1. Instructions:

- No calculators are allowed.
- There are two types of questions: PART I consisting of four subjective questions, and PART II consisting of twelve multiple-choice questions of which each has exactly one correct answer.
- GIVE DETAILED SOLUTIONS FOR THE PROBLEMS OF PART I IN THE PROVIDED SPACE AND CIRCLE THE APPROPIATE ANSWERS FOR THE PROBLEMS OF PART II.

2. Grading policy:

- 10 points for each problem of PART I.
- 5 points for each problem of PART II.
- 0 point for no answer, wrong answer, or more than one answer of PART
II.

GRADE OF PART I/40:
GRADE OF PART II/60:
TOTAL GRADE/100:

Part $\mathbf{I}(1)$. Find the absolute maximum and minimum values of the function $f(x, y)=x^{3}+3 x y-y^{3}$ on the triangular region R with vertices $(1,2),(1,-2)$, and $(-1,-2)$.

Part I(2). Evaluate the integral

$$
\int_{0}^{1} \int_{x}^{\sqrt{x}} e^{x / y} d y d x
$$

Part I(3). Set up a triple integral (without evaluating it)in cylindrical coordinates for the volume of the solid bounded by the $x y$-plane, the cylinder $r=1+\sin \theta$, and the plane $x+y+z=2$.

Part $\mathbf{I}(4)$. Find the interval of convergence of the power series

$$
\sum_{n=1}^{\infty} \frac{1}{n 5^{n}}(x-5)^{n}
$$

State where the series converges absolutely and conditionally.

Part II

1. The area of the region lying outside the circle $r=3$ and inside the cardioid $r=2(1+\cos \theta)$ is
(a) $\frac{9}{2} \sqrt{3}-\pi$.
(b) $\frac{9}{2} \sqrt{3}+\pi$.
(c) $9 \sqrt{3}+\pi / 2$.
(d) $9 \sqrt{3}-\pi / 2$.
(e) None of the above.
2. The slope of the tangent line to the curve $r=8 \cos 3 \theta$ at the point of the graph corresponding to $\theta=\pi / 4$ is
(a) 2 .
(b) -2 .
(c) 0 .
(d) 1 .
(e) None of the above.
3. If $f(x, y)=\frac{x^{3} y^{2}}{x^{4}+y^{8}}$ for $(x, y) \neq(0,0)$ and $f(0,0)=0$, then
(a) $\lim _{(x, y) \rightarrow(0,0)} f(x, y)=1 / 2$.
(b) f is discontinuous at $(0,0)$.
(c) $\lim _{(x, y) \rightarrow(0,0)} f(x, y)=0$.
(d) $\lim _{(x, y) \rightarrow(1,-1)} f(x, y)=2$.
(e) None of the above.
4. An estimate to four decimal places of the value of the integral

$$
\int_{0}^{0.1} x^{2} e^{-x^{2}} d x \text { is }
$$

(a) 10^{-4}.
(b) 2×10^{-4}.
(c) 5×10^{-4}.
(d) 3×10^{-4}.
(e) None of the above.
5. The Maclaurin series of the integral

$$
\int_{0}^{x} \sqrt[3]{1+t^{2}} d t \text { is }
$$

(a) $\sum_{n=1}^{\infty} \frac{\left(\frac{1}{3}\right)\left(\frac{1}{3}-1\right) \cdots\left(\frac{1}{3}-n+1\right)}{n!(2 n+1)} x^{2 n+1}$.
(b) $x+\sum_{n=1}^{\infty} \frac{\left(\frac{1}{3}\right)\left(\frac{1}{3}-1\right) \cdots\left(\frac{1}{3}-n+1\right)}{n!(2 n+1)} x^{2 n+1}$.
(c) $x-\sum_{n=1}^{\infty} \frac{\left(\frac{1}{3}\right)\left(\frac{1}{3}-1\right) \cdots\left(\frac{1}{3}-n+1\right)}{n!(2 n+1)} x^{2 n+1}$.
(d) $x+\sum_{n=1}^{\infty} \frac{\left(\frac{1}{3}\right)\left(\frac{1}{3}-1\right) \cdots\left(\frac{1}{3}-n+1\right)}{(2 n+1)} x^{2 n+1}$.
(e) None of the above.
6. If $a_{n}=\left(\frac{7}{2}\right)^{n}+\frac{e^{n}}{n!}$ and $b_{n}=n^{2}\left(e^{1 / n^{2}}-1\right)$, then
(a) the sequences $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ diverge.
(b) the sequences $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ converge.
(c) the sequence $\left\{a_{n}\right\}$ diverges and $\left\{b_{n}\right\}$ converges.
(d) the sequence $\left\{a_{n}\right\}$ converges and $\left\{b_{n}\right\}$ diverges.
(e) None of the above.
7. The sum of the series

$$
\sum_{n=0}^{\infty}\left[(-1)^{n} \frac{(\pi / 2)^{2 n+1}}{(2 n+1)!}+\frac{n}{3^{n-1}}\right] \quad \text { is }
$$

(a) $15 / 4$.
(b) $5 / 4$
(c) $7 / 4$
(d) $13 / 4$
(e) None of the above.
8. The function defined by $f(x, y)=\cos \left(\frac{x^{3}-y^{3}}{x^{2}+y^{2}}\right)$ for $(x, y) \neq(0,0)$, and $f(0,0)=1$
(a) has no limit at $(0,0)$.
(b) has a limit at $(0,0)$ but is not continuous at $(0,0)$.
(c) is continuous at $(0,0)$.
(d) is unbounded.
(e) None of the above.
9. If $z=f(x, y)$ where $x=e^{r} \cos \theta$ and $y=e^{r} \sin \theta$, then
(a) $f_{x}^{2}-f_{y}^{2}=e^{-2 r}\left(f_{r}^{2}-f_{\theta}^{2}\right)$.
(b) $f_{x}^{2}+f_{y}^{2}=e^{-2 r}\left(f_{r}^{2}+f_{\theta}^{2}\right)$.
(c) $f_{x}^{2}+f_{y}^{2}=e^{2 r}\left(f_{r}^{2}-f_{\theta}^{2}\right)$.
(d) $f_{x}^{2}+f_{y}^{2}=e^{2 r}\left(f_{r}^{2}+f_{\theta}^{2}\right)$.
(e) None of the above.
10. An equation of the tangent plane to the ellipsoid $\frac{3}{4} x^{2}+3 y^{2}+z^{2}=12$ at the point $P(2,1, \sqrt{6})$ is
(a) $3 x-6 y+2 \sqrt{6} z=12$.
(b) $3 y-6 x+2 \sqrt{6} z=3$.
(c) $3 y+6 x+2 \sqrt{6} z=27$.
(d) $3 x+6 y+2 \sqrt{6} z=24$.
(e) None of the above.
11. If the directional derivatives of $f(x, y)$ at the point $P(1,2)$ in the direction of the vector $\mathbf{i}+\mathbf{j}$ is $2 \sqrt{2}$ and in the direction of the vector $-2 \mathbf{j}$ is -3 , then f increases most rapidly at P in the direction of the vector
(a) $3 \mathbf{i}-\mathbf{j}$.
(b) $3 \mathbf{i}+\mathbf{j}$.
(c) $\mathbf{i}-3 \mathbf{j}$.
(d) $\mathbf{i}+3 \mathbf{j}$.
(e) None of the above.
12. The function $f(x, y)=\frac{1}{3} x^{3}+\frac{4}{3} y^{3}-x^{2}-3 x-4 y-3$ admits
(a) a local maximum value $4 / 3$.
(b) a local minimum value $-42 / 3$.
(c) a saddle point $(3,1, f(3,1))$.
(d) an absolute maximum value $f(1,1)$.
(e) None of the above.

