I. (20 pts- 5 pts each)
a) Find the Maclaurin series for $e^{x}$.
b) Find the radius and interval of convergence of the Maclaurin series for $e^{x}$.
c) Find the Maclaurin series for $\frac{1}{e}$ ?
d) Evaluate $\frac{1}{e}$ with an error of magnitude less than $\frac{1}{7!}$ ?
II. ( $10 \mathrm{pts}-5 \mathrm{pts}$ each) Consider the polar curve $r^{2}=\cos 2 \theta$
a) Sketch the curve of the lemniscates.
b) Find the area enclosed by one loop of the above lemniscate.
III. (5 pts ) Sketch the following surface :

$$
2 y^{2}+3 z^{2}+x^{2}=18
$$

IV. (10 pts) Find the volume which lies inside of the sphere centered at the origin and of radius 19 and between the cones $\varphi=\frac{\pi}{4} \& \varphi=\frac{\pi}{6}$
V. (10pts) Find all local maxima, minima, saddle points of the equation:

$$
f(x, y)=5 x^{2} y-2 x y^{2}+30 x y-3
$$

VI. (5 pts each) Evaluate the following integral :
$\int_{0}^{\sqrt{2}} \int_{y}^{\sqrt{4-y^{2}}} \frac{1}{1+x^{2}+y^{2}} d x d y$
VII. (10 pts) Evaluate the volume of the region in space bounded by the paraboloid $z=1-x^{2}-y^{2}$ and the plane $z=0$
VIII. (10 pts) Find the spherical coordinate limits for the integral that calculates the volume of the solid formed by the intersection of the inside of the sphere $(y-3)^{2}+z^{2}+x^{2}=25$ and the inside of the cylinder $y^{2}+x^{2}=4$
IX. (5 pts) Find the directional derivative of $f(x, y, z)=\cos (x y)+z^{2}$ at $p_{0}\left(1, \frac{\pi}{2}, 1\right)$ in the direction of vector $\vec{v}=4 \vec{i}+-3 \vec{k}$
X. (5 pts) Maximize the function

$$
f(x, y, z)=x y z \text { subject to the constraints } 2 x y+2 y z+2 x z=64
$$

XI. (5pts) Find the Fourier series of $f(x)=2 x+4 \quad$ where $-\pi \leq x \leq \pi$
XII. (5pts) Find using the Maclaurin series the following limit:

$$
\lim _{x \rightarrow 0} \frac{(\sin x-x)^{3}}{x^{9}}
$$

