1. (10 pts - 5 pts each) Which of the following sequences converge and which diverge? Find the limit of each convergent sequence.
a) $a_{n}=\left\{\frac{n!}{(2 n)!}\right\}^{2}$
b) $a_{n}=\left\{\sin \frac{1}{n}\right\}$
2. ($15 \mathrm{pts}-5$ pts each) Which of the following series converges and which diverges. Find the sum of each converging series if possible:
a) $\sum_{n=5}^{\infty} \frac{1}{(2+\pi)^{2 n}}$
b) $\sum_{n=1}^{\infty}(-1)^{n} \frac{n^{2}}{1+n \sqrt{n}}$
c) $\sum_{n=4}^{\infty} \frac{n^{100} 2^{n}}{\sqrt{n!}}$
3. (10 pts) Check whether the series converges absolutely, converges conditionally or diverges?

$$
\sum_{n=1}^{\infty} \frac{\left[\sin \frac{(2 n+1)}{2} \pi\right]}{\ln (\ln n)}
$$

4. (10 pts) Find the series' radius and interval of convergence and identify the values of x for which the series converges absolutely and conditionally.

$$
\sum_{n=0}^{\infty} \frac{(x-2)^{2 n}}{\sqrt{n+1}}
$$

5. (10 pts) Use the power series (Maclaurin Series) to evaluate the limit.

$$
\lim _{x \rightarrow 0} \frac{\left(e^{x}-1-x\right)^{2}}{x^{2}-\ln \left(1+x^{2}\right)}
$$

6. (10 pts) How many terms are needed to approximate the sum of the series

$$
\begin{aligned}
& \sum_{x=1}^{\infty} \tan ^{-1} x \text { with an error of magnitude no greater than } 10^{-4} ? \text { Give reasons for } \\
& \text { your answers, and estimate the sum of the series. }
\end{aligned}
$$

7. (5 pts) Find L (0.5) with an error of magnitude less than 10^{-3}, knowing that

$$
L(x)=\int_{0}^{x} \frac{e^{t}-1}{t} d t
$$

8. (10 pts) Find the Fourier series of the function on the given interval:

$$
f(t)=\left\{\begin{array}{rr}
0 & -1 \leq t \leq 0 \\
t & 0 \leq t<1
\end{array}\right.
$$

9. (10pts-5 pts each)
a) Change the following equation from polar coordinates to Cartesian coordinates: $r=1-2 \sin \theta$
b) Change the following equation from Cartesian coordinates to polar coordinates: $x+y^{2}=2 y+3$
10. (10pts-5pts each)
a) Graph : $r=\sin 3 \theta$.
b) Graph : $r=2 \cos \theta$.
