1- Main Formula:
$V=\int^{b} \mathbf{A}(\mathbf{x}) d x$
a
This formula is applied in the following 3 methods:
i- Slicing Method:
Take a cross-sectional slice of the shape.
$\mathrm{A}(\mathrm{x})$ is found depending on the shape of the cross-section.
Example: Rectangle: $\mathrm{A}(\mathrm{x})=$ length * width

$$
\text { Circle: } \mathrm{A}(\mathrm{x})=\pi \mathrm{R}^{2}
$$

ii- Disk Method:

The cross-section is already known to be a circle.
so $\underline{A(x)}=\pi R^{2}$
and $V=\int^{b} \pi R^{2} d x$

iii- Washers Method:

Donut-shaped cross-sections, so the cross-section area is:
Area of Outer Circle - Area of Inner Circle
$\underline{\mathrm{A}(\mathrm{x})=\pi \mathrm{R}_{\text {outer }}{ }^{2}-\pi \mathrm{R}_{\text {inner }}{ }^{2}}$
and so, $\mathrm{V}=\int_{\mathrm{a}}^{\mathrm{b}} \pi \mathrm{R}_{\text {outer }}{ }^{2}-\pi \mathrm{R}_{\text {inner }}{ }^{2} \mathrm{dx}$
that is, $V=\int_{a}^{b} \pi\left(R_{\text {outer }^{2}}{ }^{2}-R_{\text {inner }}{ }^{2}\right) d x$

2- Cylindrical Shells Formula:

$$
\begin{aligned}
& \text { and } \mathrm{V}=\int_{\mathrm{a}}^{\mathrm{b}} \text { Circumference * height } \mathrm{dx} \\
& \text { and } \mathrm{V}=\int_{a}^{\mathrm{b}} 2 \pi \mathrm{R} \text { * height } \mathrm{dx}
\end{aligned}
$$

