American University of Beirut
 MATH 201

Calculus and Analytic Geometry III
Fall 2007

Final Exam

Name: \qquad ID \#:
circle your section please: 1 (Th 2-2:50) 2 (F 2-2:50) 3 (F 4-4:50) 4 (F 9-9:50)
Exercise 1 (12 points) Determine if the following series converge or diverge. Justify your answers
a. $\sum_{n=0}^{+\infty} \frac{2^{3 n}}{1+3^{2 n}}$
b. $\sum_{n=1}^{+\infty} \frac{n!}{e^{n^{2}}}$
c. $\sum_{n=1}^{+\infty} \frac{\ln ^{n} n}{n^{2}}$

Exercise 2 (8 points) Assuming that the following equation

$$
2 x y+e^{x+y}-2=0
$$

defines y as a differentiable function of x, find the value of $\frac{d y}{d x}$ at the point $P(0, \ln 2)$
Exercise 3 (10 points) Given the surface $z=x^{2}-4 x y+y^{3}+4 y-2$ containing the point $P(1,-1,-2)$.
a. Find an equation of the tangent plane to the surface at P.
b. Find an equation of the normal line to the surface at P.

Exercise 4 (15 points) Express the volume V under the parabolic cylinder $z=x^{2}$ above the region enclosed by the parabola $y=6-x^{2}$ and the line $y=x$ in the $x y$-plane.
a. by using triple integral in the order $d z d y d x$
b. by using triple integral in the order $d z d x d y$
c. Evaluate V

Exercise 5 (15 points) Convert

$$
\int_{0}^{2 \pi} \int_{0}^{\sqrt{2}} \int_{r}^{\sqrt{4-r^{2}}} 3 r d z d r d \theta
$$

to (a) rectangular coordinates with the order $d z d x d y$ and (b) spherical coordinates. Then (c) evaluate one of the integrals.

Exercise 6 (10 points) Evaluate $\int_{0}^{2} \int_{-\sqrt{1-(y-1)^{2}}}^{0} x y^{2} d x d y$ by converting it to polar coordinates

Exercise 7 (15 points) Find the absolute minimum and maximum values of

$$
f(x, y)=3 x y-6 x-3 y+7
$$

on the closed triangular region R whose vertices are $(0,0),(3,0)$ and $(0,5)$.
Exercise 8 (20 points)
a. Find the work done by the force $F=x y \mathbf{i}+(y-x) \mathbf{j}$ along the straight line from $(1,1)$ to $(2,3)$
b. Green's Theorem: The counter clockwise circulation of a field $F=M \mathbf{i}+N \mathbf{j}$ around a simple closed curve C equals the double integral of $(\operatorname{curl} \mathbf{F}) . \mathbf{k}$ over the region R enclosed by C :

$$
\begin{equation*}
\oint_{C} M d x+N d y=\iint_{R}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d A \tag{1}
\end{equation*}
$$

Evaluate

$$
\oint_{C} y^{2} d x+3 x y d y
$$

Where C is the counter clockwise-oriented boundary of the upper-half unit disk.
i. by using the line integral in the left side of equation (1)
ii. ((bonus: 5 points)) by using the double integral in the right side of equation (1)

