American University of Beirut
 MATH 201

Calculus and Analytic Geometry III
Spring 2005
Final Exam

Name: \qquad ID \#:

Exercise 1 [9 points] Discuss whether the following series converges or diverges:
a) $\sum_{n=1}^{+\infty} \frac{n \sqrt{n}}{1+n^{2}}$
b) $\sum_{n=1}^{+\infty} \frac{1 \cdot 3 \cdot 5 \cdot 7 \ldots(2 n-1)}{(2 n)!}$
c) $\sum_{n=0}^{+\infty} \frac{e^{n}}{3^{n(n+1)}}$

Exercise 2 [10 points] Find the interval of convergence of the power series $\sum_{n=1}^{+\infty} \frac{1}{\sqrt{n^{2}+1}}\left(x-\frac{1}{2}\right)^{n}$ (be sure to check at the end points)

Exercise 3 a) [5 points] Find an equation of the tangent plane and a parametric equation for the normal line to the surface $z=3 x^{2} y-5 x+1$ at the point $(2,1,3)$.
b) [6 points] Suppose that $z=e^{x y}$ and that $x=2 u+v, y=u / v$. Use the chain rule to find $\partial z / \partial u$ and $\partial z / \partial v$.
(give the expressions in terms in u and v)
c) [5 points] Prove or disprove: $g(x, y)=\frac{x^{2} y^{2}}{x^{4}+3 y^{4}}$ can be extended by continuity at $(0,0)$. Justify.

Exercise 4 [15 points] Find the absolute minimum and maximum values of

$$
f(x, y)=3 x y-6 x-3 y+7
$$

on the closed triangular region R with vertices $(0,0),(3,0)$, and $(0,5)$.
Exercise 5 [10 points] Evaluate the double integral

$$
\int_{0}^{2} \int_{0}^{\sqrt{1-(y-1)^{2}}} \frac{x}{x^{2}+y^{2}} d x d y
$$

by converting it to a double integral in polar coordinates.

Exercise 6 [10 points] Let V be the volume of the tetrahedron bounded by the coordinates planes and the plane $z=4-4 x-2 y$. Express V as iterated triple integral in cartesian coordinates in the order:
a) $d x d z d y$ (do not evaluate the resulting integral).
b) $d z d y d x$, then evaluate the resulting integral.

Exercise 7 [15 points] Let V be the volume of the region R cut from the cone $z=\sqrt{x^{2}+y^{2}}$ by the two planes $z=1$ and $z=2$.
a) Sketch the region of integration.
b) Express V as iterated triple integral in cylindrical coordinates (do not evaluate the resulting integral).
c) Express V as iterated triple integral in spherical coordinates, then evaluate the resulting integral.

Exercise 8 [15 points]

a) Find the work done by the force field defined by

$$
F(x, y, z)=4 y \mathbf{i}+2 x z \mathbf{j}+3 y \mathbf{k}
$$

acting on an abject as it moves along the line segment from $(1,1,1)$ to $(2,2,1)$.
b) Evaluate the line integral $\oint_{(3,-2,0)}^{(1,0, \pi)}\left(2 x \cos z-x^{2}\right) d x+(z-2 y) d y+\left(y-x^{2} \sin z\right) d z$.

