MATHEMATICS 201
 FIRST SEMESTER, 2007-08
 QUIZ 1
 Solutions

Time: 60 Minutes
Date: November 3, 2007
Name:

ID Number:
Section:

Mr. Z. Khachadourian
Prof. A. Lyzzaik

Instructions: The examination consists of two parts: Part I consists of six written questions, and Part II of four multiple-choice questions. Please observe the following:
(a) Answers of questions of Part I must be fully justified.
(b) Circle only one choice (a), (b), \cdots, or (e) for each question of Part II.
(c) Each multiple-choice question has exactly one answer.
(d) Circling none or more than one answer for a question of Part II results in a zero credit.
(e) The grade allocated to each question is set next to it.

Part	Grade
I	$/ 68 \mid$
II	$/ 32 \mid$
TOTAL	

PART I: Investigate the following infinite series for convergence and divergence providing adequate justification.

$$
\begin{equation*}
\text { (1) } \sum_{n=1}^{\infty}\left(\frac{\ln n}{n}\right)^{3} \tag{10points}
\end{equation*}
$$

Solution. The series converges by the limit comparison test since, by L'Hospital's rule,

$$
\lim _{n \rightarrow \infty} \frac{(\ln n / n)^{3}}{(1 / n)^{2}}=\frac{(\ln n)^{3}}{n}=0
$$

and the p-series, $p=2, \sum_{n=1}^{\infty} 1 / n^{2}$ converges.
(2) $\sum_{n=1}^{\infty} \sqrt[3]{n} \sin \left(\frac{1}{\sqrt[3]{n}}\right)$
(10 points)
Solution. The series diverges by the n-th term test since

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\sin (1 / \sqrt[3]{n})}{1 / \sqrt[3]{n})}=1 \tag{10points}
\end{equation*}
$$

(3) $\sum_{n=0}^{\infty}\left(\frac{n+2}{n+3}\right)^{n^{2}}$

Solution. The series converges by the $n-$ th root test since

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \sqrt[n]{\left(\frac{n+2}{n+3}\right)^{n^{2}}} & =\lim _{n \rightarrow \infty}\left(\frac{n+2}{n+3}\right)^{n} \\
& =\lim _{n \rightarrow \infty} \frac{(1+2 / n)^{n}}{(1+3 / n)^{n}} \\
& =e^{2} / e^{3}=1 / e<1
\end{aligned}
$$

(4) $\sum_{n=1}^{\infty} \frac{2^{n} \ln n}{n^{10}}$

Solution. The series diverges by the ratio test since

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{\frac{2^{n+1} \ln (n+1)}{(n+1)^{10}}}{\left(\frac{2^{n} \ln n}{n^{10}}\right)} & =2\left(\frac{n}{n+1}\right)^{10} \frac{\ln (n+1)}{\ln n} \\
& =2>1 .
\end{aligned}
$$

(5) $\sum_{n=1}^{\infty} \frac{2.4 .6 . \quad \cdots \quad .(2 n)}{1.3 .5 . \cdots \cdot(2 n-1)} \cdot \frac{1}{n}$
(10 points)
Solution. The series diverges by the direct comparison test since

$$
\frac{2.4 .6 . \quad \cdots \cdot(2 n)}{1.3 .5 . \cdots \cdot(2 n-1)} \cdot \frac{1}{n}=\left(\frac{2}{1}\right)\left(\frac{4}{3}\right)\left(\frac{6}{5}\right) \cdots\left(\frac{2 n}{2 n-1}\right) \cdot \frac{1}{n}>\cdot \frac{1}{n}
$$

and the harmonic series diverges.
(6) Given the power series

$$
\sum_{n=1}^{\infty}(-1)^{n} \frac{(x+2)^{n}}{3^{n} n \ln n}
$$

For what values of x does the series converge (i) absolutely and (ii) conditionally? Find the radius of convergence.
Solution. Since

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left|\frac{(-1)^{n+1} \frac{(x+2)^{n+1}}{3^{n+1}(+1) \ln (n+1)}}{(-1)^{n} \frac{(x+2)^{n}}{3^{n} n \ln n}}\right| & =\frac{|x+2|}{3} \lim \frac{n}{n+1} \lim \frac{\ln n}{\ln (n+1)} \\
& =\frac{|x+2|}{3},
\end{aligned}
$$

by the ratio test for absolute convergence, the series converges absolutely for values of $x,|x+2|<3$, or, $-5<x<1$, and diverges for values of $x,|x+2|>3$, or, $x>1$ or $x<-5$.

If $x=1$, then the series becomes

$$
\sum_{n=1}^{\infty}(-1)^{n} \frac{1}{n \ln n}
$$

which converges by the alternating series test since the sequence $\{1 /(n \ln n)\}$ of positive terms is strictly decreasing to zero, but diverges absolutely since the series $\sum 1 /(n \ln n)$ is a $p-\log$ arithmic series with $p=1$. Hence, the power series converges conditionally at $x=1$.

If $x=-5$, then the series becomes

$$
\sum_{n=1}^{\infty} \frac{1}{n \ln n}
$$

which diverges as argued above.
PART II: Circle the correct answer in the following multiplechoice questions:
(7) If the series

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n} 2^{n}}{(n!)^{2}}
$$

is approximated by the sum of its first three terms, then the magnitude of the error made (according to the alternating series estimation theorem) is less than
(a) $1 / 9$
$\rightarrow \quad(b) 2 / 9$
(c) $3 / 4$
(d) $2 / 19$
(e) none of the above.
(8) The sum of the series

$$
\sum_{n=0}^{\infty} \frac{3^{n}(n!-1)}{4^{n} n!} \quad \text { is }
$$

(a) $5 / 2-e^{3 / 5}$
(b) $3-e^{3 / 4}$
(c) $4-e^{-3 / 4}$
\rightarrow
(d) $4-e^{3 / 4}$
(e) none of the above.
(9) The approximate value with an error of magnitude less than 10^{-3} of the integral

$$
\int_{0}^{1} \frac{\sin \left(x^{3}\right)}{x^{2}} d x \quad \text { is }
$$

(a) $15 / 64$
(b) $17 / 120$
(c) $23 / 48$
(d) $23 / 96$
(e) none of the above.
(10) If $f(x)=x^{2} e^{-2 x}$, then $f^{5}(0)$ equals
$\rightarrow \quad(\mathrm{a})-160$
(b) -120
(c) 80
(d) -540
(e) none of the above.
[Hint: It is time consuming to attempt successive derivatives]

