
CS232 Discussion 7: Pipelining

1. We are given the following latencies for each stage in our single-cycle processor.

IF ID ALU MEM WB
200ps 100ps 200ps 200ps 100ps

(a) What is the speedup obtained from pipelining?
Solution:
To determine the speedup, we need to compare the latency of instructions in the old
(single-cycle) implementation vs. the latency of instructions in the new (pipelined)
implementation.
Note that single-cycle instruction latency = time for a single clock cycle = time for
longest possible instruction. The longest instruction is one that uses all the given
components, namely a lw (load) instruction. Hence, single-cycle instruction latency
= 200 + 100 + 200 + 200 + 100 = 800ps.
In contrast, pipelined instruction latency =̃ time for a single clock cycle = time for
longest possible stage. The first ”equality” only holds in the ideal case, i.e. when
there are no stalls, we ignore the pipeline filling and draining stages, and we ignore
the overhead of extra hardware needed for the pipelined datapath and control. The
second equality holds because each pipeline stage must be completed within a clock
cycle. The pipelined instruction latency is 200ps.
The speedup obtained is 800ps/200ps = 4. Remember, this is in the ideal case, for
the assumption we made above. The key is to remember that a pipelined machine
strives to attain the same CPI as the single-cycle machine (which is 1), but achieve
a much faster clock rate (faster by a factor of k, where k is the ratio of the length of
a full instruction to the length of a single stage).

(b) If the time for an ALU operation can be shortened by 25% will it affect the speedup
obtained from pipelining? If yes, by how much? If no, why not?
Solution:
Speeding up the ALU does not speed up the pipeline. The length of the longest stage
remains the same, because IF and MEM stages still take 200 ps.

(c) What if the ALU operation now takes 25% more time?
Solution:
With the ALU modification, pipelined implementation takes:
instr time new = (longest stage time)/cycle * 1 cycle/instr
= 250ps/cycle * 1 cycle/instr
= 250ps/instr
Of course, the single cycle machine also takes longer by 50ps.
Speedup = 850/250 = 3.4
The pipeline speedup is reduced from a factor of 4 to a factor of 3.4, so lengthening
the ALU stage does affect the pipelining speedup. Now the ALU is the longest stage
and the cycle time must be increased to accommodate it.

1



CS232 Discussion 7: Pipelining

2. StingyMIPS is a 5-stage pipelined implementation of MIPS without forwarding. Consider
the following piece of code containing data hazards.
Rewrite this code so that it does the same thing on StingyMIPS as on regular MIPS, but
runs without stalls on StingyMIPS. A stall delays every subsequent instruction by 1 cycle.

Initial code: Solution:

add $1, $2, $3 add $1, $2, $3
add $4, $1, $3 add $5, $6, $3
add $5, $6, $3 add $7, $8, $3
add $7, $8, $3 add $4, $1, $3

There is a dependency between the first and second lines of code (on register $1). Without
forwarding we would need to stall for two cycles. However, the trick here is to realize that
the 3rd and 4th instructions can be brought forward, since they can be done out of order
and without causing any hazards.

3. Suppose we have the following chunk of code containing only R-type instructions.

add $8,$5,$5
add $2,$5,$8
sub $3,$8,$4
add $2,$2,$3

(a) Identify the hazards involved (draw the arrows between dependencies that cause data
hazards).

Figure 1. Hazards in the code above

(b) Figure below shows the pipelined datapath with four forwarding inputs. For each
dependency identified above specify which numbered forwarding path is used.
Solution:
The first instruction writes the results to register $8. The next instruction needs it
as the second ALU input. This corresponds to the forwarding path #3. The third
instruction also reads register $8 as the first ALU input. The value that it needs is
already in the MEM stage. This corresponds to the forwarding path #2.
Similarly, the forwarding of the contents of register $2 uses the forwarding path #2
and the forwarding of the contents of register $3 uses the forwarding path #3.

2



CS232 Discussion 7: Pipelining

(c) Fill out the pipeline table assuming forwarding implemented.
Solution:
All hazards are eliminated by forwarding. Therefore, the code can be pipelined with
no stalls.

Table 1. Pipeline Diagram with Forwarding

Instruction 1 2 3 4 5 6 7 8
add $8,$5,$5 IF ID EX MEM WB
add $2,$5,$8 IF ID EX MEM WB
sub $3,$8,$4 IF ID EX MEM WB
add $2,$2,$3 IF ID EX MEM WB

(d) Now assume that you do not have forwarding hardware. Fill in the pipeline diagram
below.
Solution:
Forwarding is not an available option. The code has to be stalled in the pipeline if
it is to execute correctly. Note the fact that reads and writes of the register file can
happen in the MIPS pipeline in the same cycle. Writes occur on the leading edge of
the clock and due reads happen on the trailing edge. Therefore, ID and WB stages
can execute in the same cycle, limiting the stall time to 2 cycles instead of 3.

Table 2. Pipeline Diagram without Forwarding

Instruction 1 2 3 4 5 6 7 8 9 10 11 12
add $8,$5,$5 IF ID EX MEM WB
add $2,$5,$8 IF stall stall ID EX MEM WB
sub $3,$8,$4 IF stall stall ID EX MEM WB
add $2,$2,$3 IF stall stall ID EX MEM WB

4. A pipelined processor has k pipeline stages. Assuming no stalls, how many cycles are
required to execute n instructions?
Solution:
In a k-stage pipeline, the first instruction completes after k clock cycles, and one instruc-
tion completes in every cycle after that. So, it takes k cycles to execute 1 instruction,
(k+1) cycles to execute two, and so on. Executing n instructions, takes (k+n−1) cycles.

3


