AMERICAN UNIVERSITY OF BEIRUT
 DEPARTMENT OF MATHEMATICS
 FALL SEMESTER 2004-05
 MATH 201, QUIZ II

Time: 90 minutes

Answer the following questions:

1. Consider the polar curves $r=1+2 \cos \theta$ and $r=4 \cos \theta$.
(a) Sketch the graphs of the polar curves. (8 points)
(b) Find their points of intersection.
(8 points)
(c) Find the area of the region that lies inside the curve $r=4 \cos \theta$ and outside the curve $r=1+2 \cos \theta$.
2. Let $f(x)=x / 2$ if $-\pi \leq x \leq \pi$.
(a) Show that the Fourier series of f is $\sum_{n=1}^{\infty}(-1)^{n+1}(\sin n x) / n$. (9 points)
(b) For what values of $x,-\pi \leq x \leq \pi$, does the equality

$$
\frac{x}{2}=\sum_{n=1}^{\infty}(-1)^{n+1} \frac{\sin n x}{n}
$$

hold? Justify your answer.
(8 points)
(c) Use (b) to conclude the value of $\pi / 4$ as an alternating series.
(8 points)
3. (a) By discussing the limit of the function

$$
f(x, y)=\frac{x^{4}+y^{4}}{\left(x^{2}+y^{2}\right)^{3 / 2}} \quad((x, y) \neq(0,0))
$$

at $(0,0)$, decide whether $f(0,0)$ can be defined so that f becomes continuous at $(0,0)$.
(b) Find an equation for the tangent plane to the paraboloid $z=2 x^{2}+3 y^{2}$ at the point $P(1,-1,5)$.
(c) Find and classify the critical points of the function $f(x, y)=2 x^{3}-3 x^{2}+$ $y^{2}-12 x+10$.
(9 points)
4. (a) The temperature T at (x, y, z) is given by

$$
T(x, y, z)=4 x^{2}-y^{2}+16 z^{2} .
$$

Find the maximum rate of change of T at the point $P(4,2,-1)$ and the direction in which it is achieved.
(9 points)
(b) Find an equation for the normal line to the curve $2 x^{3}+x^{2} y=1-y^{3}$ at the point $P(-1 / 2,1)$.
(8 points)
(c) Sketch the level surface passing through the point $P(1,1,1)$ of the function $f(x, y, z)=x^{2}+y^{2}-z^{2}$.
(8 points)

