Errors

· True Percent Relative Error:
ε t = | true value - approximation | * 100
         |	               true value 	                 |

· Approximate Percent Relative Error:
ε a = | current approx. - previous approx.| * 100
          |	      current approx.                   	     |

· Prespecified Percent Error:
ε s = 0.5 * 10 2 - n %	where n = desired no. of significant figures




Numerical Methods


Approximation of ƒ(x)


· Taylor Series Expansion:
 knowing the value of ƒ(x0) at a certain x0, ƒ(x) where x ≠ x0 can be approximated using:

 ƒ(x) = ƒ(x0) + ƒ’(x0)*(x - x0)1  + ƒ’’(x0)*(x - x0)2 + ... + ƒ(n) (x0)*(x - x0)n
                          1!                          2!                                  n!
 
 accuracy generally increases as a larger n is chosen





Approximation of a Root of a Function


· Bisection Method (Binary Search):
 x r = x L + x U
 	 2
	“sign” = sign of ƒ( x L ) * ƒ( x U )
	If sign > 0 : root is between x r and x U , so set new x L = x r and keep x U
	   ( i.e: keep the upper bound x U )
	If sign < 0 : root is between x L and x r , so keep x L and set new x U = x r
	  ( i.e: keep the lower bound x L )


· False Position Method:
 x r = x U  - ƒ( x U )*( x L - x U ) 
	         ƒ( x L ) - ƒ( x U )
 Similarly,
	set the new values of xL and xU according to the “sign” of ƒ(xL) * ƒ(xu)


· Simple Fixed Point Method:
 	Requires an initial approximation “x 0”
	isolate the unknown x to obtain the form:
 x i+1 = g( x i)
 
 	In the case of polynomials, start by isolating the highest order term,
	and then reducing it to x. (this reduces error by reducing exponents) 










· Newton-Raphson Method (Tangents):
	Requires an initial approximation “x0”
 x i+1 = x i - ƒ( x i)
	       ƒ'( x i)


· Secant Method:
 Requires 2 initial approximations, “x0” and “x-1” (where x-1 is the value that is more towards the left of the x-axis)
 
	x i+1 = x i - ƒ( x i)*( x i-1 - x i)
	         ƒ(x i-1) - ƒ(x i)






Approximation of a Root of a Polynomial


· Müller Method:
 	Requires 3 initial approximations “x0”, “x -1”, & “x -2”
 x i+1 = x i  +          __-2c_________
	              b ± sqrt( b2 - 4ac )
	where:
	h 0 = x1 - x0
	h 1 = x2 - x2
 	δ 0  =  ƒ( x1 ) - ƒ (x0 )
	         	        h 0
	δ 1 = ƒ( x2 ) - ƒ( x1 )
	        	        h 1
 	a =  δ 1 - δ 0
	       h 1 + h 0
	b = ah 1 + δ 1
	c = ƒ( x2 )
 
 For the denominator,
	choose + or - depending on which yields a larger absolute value.





Approximation of the Solution to a System of Linear Equations / Matrix

· Gauss-Seidel Method:
 	Isolate the unknowns to obtain equations of the form:
	x 1 = ( ... - ... x 2 - ... x 3 ) / ...
	x 2 = ( ... - ... x 1 - ... x 3 ) / ...
	x 3 = ( ... - ... x 1 - ... x 2 ) / ...
 
	An initial value for each unknown is required.
	The most recent available value of x i is used in each computation;
	that is:
	x 1  i + 1 = ( ... - ... x 2  i  - ... x 3  i ) / ...
	x 2  i + 1 = ( ... - ... x 1  i + 1 - ... x 3  i ) / ...
	x 3  i + 1 = ( ... - ... x 1  i + 1 - ... x 2  i + 1 ) / ...





Optimization (Searching for the Minimum/Maximum Points)


· Golden Search Method:
 	golden ratio ≅ 0.618
	given an initial range [ x L , x U ] :
 
 x 1 = x L + d
	x 2 = x U - d
	where
	d = 0.618 *  ( x U  - x L )	
 Note that d > (0.5 * length of range) , which means the points are in this order:
	   x L ____ x 2 _______ x 1 ____ x U
	      [_______ d _______]
 
 To reduce the range for the next iteration (when searching for max pt. ):
	- if ƒ( x 1 ) > ƒ( x 2 ) , then x 1 is optimal (closer to the max pt),
	  so the new range is [ x 2 , x U ]
	- if ƒ( x 1 ) < ƒ( x 2 ) , then x 2 is optimal (closer to the max pt),
	  so the new range is [ x L , x 1 ]
 Note that the min pt. of ƒ(x) is equivalent to the max pt. of  - ƒ(x) 
	When using this method, Approximate Percent Relative Error is found by:
	ε a = 0.382 * | ( x U - x L ) / x optimal | * 100



· Newton Method:
 
 	Requires an initial approximation “x 0”
 
	x i + 1 = x i - ƒ’( x i)
	        		ƒ’‘( x i)
 
 If ƒ”( x ) > 0 : min pt.
 If ƒ”( x ) < 0 : max pt. 




Two-Dimensional Optimization
given a function ƒ ( x , y ) ,  e.g :  ƒ ( x , y ) = xy 2 
and searching for an optimal point ( x , y )


· Hessian Matrix:
Setting the 1st derivatives of ƒ to 0 returns possible min/max pts:
	|dƒ/dx = 0
	|dƒ/dy = 0
The returned point may be a minimum, maximum, or saddle point (neither).
To determine which it is, the 2nd derivative of ƒ must be checked:
The 2nd derivative of a many-variable function with respect to its variables
is called its Hessian. In the case of ƒ ( x, y ) it is defined as the matrix:
[ H ] =    d2 ƒ / dx2	    d2 ƒ / dxdy  
	   d2 ƒ / dydx	   d2 ƒ / dy2 
where:
d2 ƒ / dx2 =  2nd derivative of ƒ with respect to x
d2 ƒ / dy2 =  2nd derivative of ƒ with respect to y
d2 ƒ / dxdy = d2 ƒ / dydx = d ( dƒ/dx ) / dy = d ( dƒ/dy ) / dx
Thus:
if the determinant |H| > 0 and d2ƒ / dx2 > 0 : the point a minimum
if the determinant |H| > 0 and d2ƒ / dx2 < 0 : the point a maximum
if the determinant |H| < 0 : the point a saddle point (neither)


· Steepest Ascent Method:
Starting from an initial point p(x0 , y0), move in the direction of the gradient ∇ƒ
incrementally:  pn+1 = pn + hn * ∇ƒ( pn )
 
 	i.e:
xn+1 = xn + hn * ƒ ‘( xn )
yn+1 = yn + hn * ƒ ‘( yn )
To find hn :
-Replace p(xn+1 , yn+1) into the multi-variable function ƒ 
to obtain a single-variable function g (whose variable is hn)
-Derive g with respect to hn and find the root of the derivative. i.e: g ’(hn) = 0, hn=?

Interpolation (Approximation of Unknown Intermediate Points)


· Interpolation by Lagrange Polynomial:
 
 Given a discrete set of data points: ( x0 ,ƒ(x0) ), ( x1 ,ƒ(x1) )...  
	approximate an unknown point p ( x, ƒ(x) ) :
 ƒn(x) = L0 ƒ(x0) + L1 ƒ(x1) + ... + Lk ƒ(x) + ... + Ln ƒ(xn)
 
 where:
	Lk = (x - x0)(x - x1)...(x - xk-1)(x - xk+1) ...(x - xn) 	  Notice: The fraction with denominator
	       (xk- x0)(xk- x1)...(xk- xk-1)(xk- xk+1)...(xk- xn)	   (x k - x k) is skipped from this product.   
	          n
	      = ∏     x - xi
                           i=0 & i≠k  xk - xi



· Interpolation by Newton Polynomial:
Using this method, it is possible to make use of previous calculations as more data points are added, since ƒn(x) = ƒn-1(x) + bn(x - x0)(x - x1)...(x - xn-1)

In general,
 ƒn(x) = b0 + b1(x - x0) + b2(x - x0)(x - x1) + ... + bn(x - x0)(x - x1)...(x - xn-1)

	where,
	b0 = ƒ(x0)
	
b1 = ƒ(x1) - ƒ(x0)
	           x1 - x0

         	        ƒ(x2) - ƒ(x1)  -  b1
	b2 =       x2 - x1                                                  and in general:  bn = Dn-1ƒ1 - Dn-1ƒ0  = Dnƒ0
	                   x2 - x0	 	                             		          xn - x0	
	     					(where Dƒ is known as the “divided difference”)




Approximation of Integrals
 xn
    given an integral    ∫ƒ(x) dx
x0
and given that the interval [x0 , xn] is divided into N segments of equal length
let h = (xn - x0)
           N            
Note that h is the distance between successive abscissas x0 & x1, x1 & x2, etc.
ƒ(xn) is denoted as ƒn for brevity in the following


·  Trapezoidal Rule:
 
xn
 ∫ƒ(x) dx = h { (ƒ0 + ƒ1) + (ƒ1 + ƒ2) + ... + (ƒn-2 + ƒn-1) + (ƒn-1 + ƒn) }
 x0               2

i.e:
 xn
 ∫ƒ(x) dx = h ( ƒ0 + 2ƒ1 + 2ƒ2 + ... + 2ƒn-2 + 2ƒn-1 + ƒn)
 x0	           2
















·  Simpson’s 1/3 Rule:
 Simpson’s rules are generally significantly more accurate than the trapezoidal rule.
 
 Assuming n is even:
 xn
 ∫ƒ(x)dx = h{(ƒ0 +4ƒ1 + ƒ2) + (ƒ2 +4ƒ3 + ƒ4) +...+ (ƒn-4 +4ƒn-3 + ƒn-2) + (ƒn-2 +4ƒn-1 + ƒn)}
 x0	       3
i.e:
 xn
 ∫ƒ(x)dx = h (ƒ0 + 4ƒ1 + 2ƒ2 + 4ƒ3 + 2ƒ4 +...+  2ƒn-4 + 4ƒn-3 + 2ƒn-2 + 4ƒn-1 + ƒn)
 x0	       3

i.e:
 xn
 ∫ƒ(x)dx = h ( ƒ0 + 4∑ƒodd-numbers + 2∑ƒeven-numbers + ƒn )
 x0	        3


· Simpson’s 3/8 Rule:

	Has a fixed formula; fixed at N = 3 and n = 3:
 
	h = x3 - x0
	                3
 x3
 ∫ƒ(x)dx = 3h ( ƒ0 + 3ƒ1 + 3ƒ2 + ƒ3 )
 x0	          8
 









·  2-Point Gauss-Legendre:
	The interval of the integral must be [-1,1 ]
	If it is not, any definite integral can be changed to an integral over [-1,1 ] using a variable substitution known as Gauss-Legendre translation:

	xnew = (xn - x0) xold  +  (xn + x0)
	       	     2	                      2
	dxnew = (xn - x0) dxold
	        	        2

i.e:  	 xn	         	       1	     			          1
 ∫ƒ(x) dx = (xn - x0) ∫ƒ( (xn - x0) x  +  (xn + x0) ) dx = ∫ƒ(xnew) dxnew
 x0                    2   -1         2                    2	         -1
	
The 2-Point Gauss Legendre formula can now be applied:
  1
   ∫ƒ(x) dx = f( -1  )  +  f(  1  )
 -1	          ( √3 )	  ( √3 )
 
This approximation formula actually gives the exact result for polynomials of degree ≤ 3




Approximation of  Solutions of Ordinary Differential Equations
given  y'(t) = ƒ(t, y) (i.e. ƒ denotes the 1st derivative) and  y(t0) = y0
as well as a step size h, where h is also the difference between successive tn-1 & tn


· Euler’s Method:
	Low accuracy

	yn+1 = yn + hƒ(tn, yn)


· Midpoint Method:
 	High accuracy

 yn+1 = yn + k2 h

where:
 k1 = ƒ(xn, yn)
 k2 = ƒ(xn + h , yn + k1 h )
	         2              2


· Runge-Kutta Method:
 Less accurate than Midpoint Method

 yn+1 = yn + ( k1 + k2 ) h
	               2      2 
 where:
 k1 = ƒ(xn, yn)
 k2 = ƒ(xn + h , yn + k1 h )

