
Assembly – CCS320 Abbas Tarhini

Chapter 6

The aim of this chapter is to understand and work with Boolean operations, conditional

jumps and selection statements.

Binary processing is one of the basics that should be studied in conditional processing;

specifically, we study the AND, OR, XOR, NOT and TEST operations.

AND Instruction:

Performs a bitwise AND operation between each pair of matching bits in two operands and

places the result in the destination operand. Note that operands can be 8-, 16-, or 32-bit, and

they should have the same size.

Syntax:

 AND destination , source

The following are the permitted operand operations:

 AND reg , reg

 AND reg , mem

 AND reg , imm

 AND mem . reg

 AND mem , imm

How does the AND operation works? For each matching bit in each operand, if both bits

equal 1, the result bit is 1; otherwise, it is zero.

The Overflow and the Carry flags are always cleared by the AND instruction. The Sign,

Zero, and Parity flags are modified according to the destination operand.

Example:

Covert a lower case character ('a' 61h) to upper case ('A 41h'):

61h: 0 1 1 0 0 0 0 1

41h: 0 1 0 0 0 0 0 1

Thus, to convert from small letter to capital letter, we have to AND the small letter character

with 11011111.

.data

array BYTE 50 DUP(?)

.code

mov ecx LENGTHOF array

mov esi, OFFSET array

L1:

And BYTE PTR [esi] , 11011111b

inc esi

loop L1

Note that we have to use the BYTE PTR otherwise the assembler cannot tell whether esi

points to a BYTE, WORD, or a DWORD.

Assembly – CCS320 Abbas Tarhini

OR Instruction:

Performs a bitwise (Boolean) OR operation between each pair of matching bits in two

operands and places the result in the destination operand. Note that operands can be 8-, 16-,

or 32-bit, and they should have the same size.

Syntax: OR destination , source

Similar to AND instruction, the following are the permitted operand operations:

 OR reg , reg

 OR reg , mem

 OR reg , imm

 OR mem . reg

 OR mem , imm

How does the OR operation works? For each matching bit in the two operands, the output bit

is 1 when at least one of the input bits is 1.

Example:

OR instruction can be used to convert from (0 – 9) integer into (0-9) ASCII:

 0 0 0 0 0 1 0 1 : 5h

 0 0 1 1 0 0 0 0 : 30h

 0 0 1 1 0 1 0 1 :

OR instruction clears the Carry and Overflow flag. It modifies the Sign, Zero, and Parity flag

according to the value in the destination operand.

XOR Instruction:

Performs a bitwise (Boolean) exclusive-OR operation between each pair of matching bits in

two operands and places the result in the destination operand. Note that operands can be 8-,

16-, or 32-bit, and they should have the same size.

Syntax: XOR destination , source

Similar to AND instruction, the following are the permitted operand operations:

 XOR reg , reg

 XOR reg , mem

 XOR reg , imm

 XOR mem . reg

 XOR mem , imm

How does the XOR operation works? For each matching bit in the two operands, the output

bit is 0 when both bits are different, and 1 if both bits are similar.

XOR instruction clears the Carry and Overflow flag. It modifies the Sign, Zero, and Parity

flag according to the value in the destination operand.

Assembly – CCS320 Abbas Tarhini

NOT Instruction:

The NOT instruction complements all the bits in an operand.

Syntax: NOT operand

Permitted operand types are:

 NOT reg

 NOT mem

TEST Instruction:

Similar to the AND instruction but it does not modify the destination operand. It is used to

check which individual bits are set.

If the result of a TEST operation is all zero, the Zero flag is set; otherwise it is cleared.

CMP Instruction:

It performs subtraction of a source operand from a destination operand. (N.B: operands are

not modified.):

Syntax:

 CMP destination, source

The result of the CMP instruction affects the FLAGS as follows:

CMP Results ZF CF

destination < source 0 1

destination > source 0 0

destination = source 1 0

CMP Results Flags

destination < source SF != OF

destination > source SF = OF

destination = source ZF = 1

CMP uses the same operand combinations as the AND instruction.

In all cases, we benefit from the result of CMP by using the following conditional jump

instructions:

 Syntax:

 Jcond destination

 where destination is a label in the code segment. Jcond will move the program execution

to the destination if the result of the Jcond is true based in the result from the CMP

instruction.

Jcond instructions:

 Jc Jump if carry flag is set.

 Jnc Jump if carry flag is not set (clear).

Assembly – CCS320 Abbas Tarhini

 Jz Jump if zero flag is set.

 Jnz Jump if zero flag is not set (clear).

 Jo Jump if overflow flag is set.

 Jno Jump if overflow flag is not set (clear).

 Js Jump if signed flag is set.

 Jns Jump if signed flag is not set (clear).

Equality comparisons:

Je Jump if left operand = right operand.

Jne Jump if left operand != right operand.

JCXZ Jump if CX = 0.

JECXZ Jump if ECX = 0.

Unsigned comparisons:

 JA Jump if above (left operand > right operand).

 JNBE Same as JA.

 JAE Jump if above or equal (left >= right).

 JNB Same as JAE.

 JB Jump if below (left < right).

 JNAE Same as JB.

 JBE Jump if below or equal (left <= right).

 JNA Same as JBE.

Signed comparisons:

 JG Jump if greater (left > right).

 JNLE Same as JG.

 JGE Jump if greater or equal (left >= right).

 JNL Jump if not less than (Same as JGE).

 JL Jump if less (left < right).

 JNGE Same as JL.

 JLE Jump if less than or equal (left <= right).

 JNG Same as JLE.

Example:

 Finding an element in an array.

 Encrypting a text.

LOOPZ and LOOPE Instructions:

Loope and Loopz (loop if zero): this instruction loops as long as the Zero flag is set and the

value of EXC is greater than zero.

LOOPNZ and LOOPNE

Loopnz and Loopne: loops as long as the Zero flag is clear and ECX is greater than zero.

