MATH 201. More problems on Taylor series and applications.

- a- Find the MacLaurin series for the function $f(x)=x e^{x}$.

Does this series converge to $f(x)$? If so, over which interval?
b-Conclude a value for the sum $\sum_{n=0}^{\infty} \frac{n+1}{n!}$.

- Let $f(x)=\frac{x}{1+2 x}$
a) Find its Maclaurin series.
b) Conclude a value for $f^{(7)}(0)$
-

a- Let $f(x)=2 x^{3}+x^{2}-x+3$. Find its Taylor polynomial of order 3 around $a=1$.
b- Expand the polynomial obtained. What do you observe? Why?

- Use the known geometric series $\frac{1}{1-r}=1+r+r^{2}+r^{3}+r^{4}+\ldots$ for $-1<r<1$ to express $f(x)=\frac{1}{7-2 x}$ as a Taylor series around $a=3$.
a-Use a known MacLaurin series to evaluate $\lim _{x \rightarrow 0} \frac{1-\cos x}{1+x-e^{x}}$.
b-Write the indefinite integral $\int \sin \left(x^{2}\right) d x$ as an infinite series.
a-Write the Maclaurin series for $f(x)=\frac{1}{1-x}$
b-Conclude the Maclaurin series for $\tan ^{-1}\left(x^{2}\right)$
c- Conclude the value of the following sum $\sum_{n=0}^{\infty}(-1)^{n} \frac{1}{4 n+2}$
- a. Write the Maclaurin series for $e^{-x^{2}}$.
b- Determine where the series $\sum_{n=1}^{\infty} \frac{(-1)^{n} 2 n}{n!}$ converges to.

