EECE 290, Problem solving

Session 10

Use of dB's

$$
A_{\mathrm{dB}}=20 \log _{10}(|H(s)|)=10 \log _{10}\left(|H(s)|^{2}\right),|H(s)|=10^{A_{\mathrm{dB}} / 20}
$$

TableForm=

signal ratio	power ratio	dB
0.1	0.01	-20.0
0.141421	0.02	-17.0
0.2	0.04	-14.0
0.3	0.09	-10.5
0.5	0.25	-6.0
0.707107	0.5	-3.0
1.	1.	0.0
1.41421	2.	3.0
2.	4.	6.0
3.	9.	9.5
5.	25.	14.0
7.07107	50.	17.0
10.	100.	20.0

In cascaded circuits signal and power ratio's are multiplied, dB-values are added.

$$
A_{\mathrm{dB}}=20 \log _{10}(|H(s)|)=10 \log _{10}\left(|H(s)|^{2}\right),
$$

A factor of 4 in signal voltages corresponds to?

TableForm $=$

signal ratio	power ratio	$d B$
0.1	0.01	-20.0
0.141421	0.02	-17.0
0.2	0.04	-14.0
0.3	0.09	-10.5
0.5	0.25	-6.0
0.707107	0.5	-3.0
1.	1.	0.0
1.41421	2.	3.0
2.	4.	6.0

A. $-12 d B$
B. -6 dB
C. 3 dB
D. 6 dB
E. 12 dB

A factor of $1 / 1000$ in powers corresponds to?
$A_{\mathrm{dB}}=20 \log _{10}(|H(s)|)=10 \log _{10}\left(|H(s)|^{2}\right)$,
TableForm=

signal ratio	power ratio	$d B$
0.1	0.01	-20.0
0.141421	0.02	-17.0
0.2	0.04	-14.0
0.3	0.09	-10.5
0.5	0.25	-6.0
0.707107	0.5	-3.0
1.	1.	0.0
1.41421	2.	3.0
2.	4.	6.0

A. -60 dB
B. -30 dB
C. -15 dB
D. 0 dB
E. 30 dB

$$
A_{\mathrm{dB}}=20 \log _{10}(|H(s)|)=10 \log _{10}\left(|H(s)|^{2}\right),
$$

$-2 \mathrm{~dB}$

corresponds to?

signal ratio	power ratio	$d B$
0.1	0.01	-20.0
0.141421	0.02	-17.0
0.2	0.04	-14.0
0.3	0.09	-10.5
0.5	0.25	-6.0
0.707107	0.5	-3.0
1.	1.	0.0
1.41421	2.	3.0
2.	4.	6.0

A. $1 / 2$ in powers
B. $1 / 2$ in voltages
C. 0.7 in powers
D. 0.8 in powers
E. 0.7 in voltages
F. 0.8 in voltages

- Scaling

- circuit parameter expressions

$$
\begin{aligned}
R^{\prime} & =k_{m} R \\
L^{\prime} & =\frac{k_{m}}{k_{f}} L \\
C^{\prime} & =\frac{c}{k_{m} k_{f}}
\end{aligned}
$$

- frequency expressions

$$
\begin{aligned}
& \omega^{\prime}=k_{f} \omega \\
& B^{\prime}=k_{f} B \\
& \omega_{0}^{\prime}=k_{f} \omega_{0} \\
& Q^{\prime}=\frac{\omega_{0}^{\prime}}{B^{\prime}}=Q \\
& \frac{1}{R^{\prime} C^{\prime}}=\frac{k_{f}}{R C} \\
& \frac{R^{\prime}}{L^{\prime}}=k_{f} \frac{R}{L} \\
& \frac{1}{\sqrt{L^{\prime} C^{\prime}}}=k_{f} \frac{1}{\sqrt{L C}} \\
& j \omega^{\prime} L^{\prime}=j k_{m} \omega \mathrm{~L} \\
& \frac{1}{j \omega^{\prime} C^{\prime}}=\frac{k_{m}}{j \omega C}
\end{aligned}
$$

$R^{\prime}=k_{m} R, \quad \omega^{\prime}=k_{f} \omega, \quad L^{\prime}=\frac{k_{m}}{k_{f}} L, \quad$ and $\quad C^{\prime}=\frac{1}{k_{m} k_{f}} C$
For the normalized $R L$ filter having $\omega_{\mathrm{c}}=1$ $\mathrm{rad} / \mathrm{s}, L=1 \mathrm{H}$, and $R=1 \Omega$, it is required to have $\omega_{\mathrm{c}}=1 \mathrm{krad} / \mathrm{s}$ and $L=10 \mathrm{mH}$. What are the values of k_{f} and k_{m} ?
A. $\mathrm{k}_{\mathrm{f}}=10000$ and $\mathrm{k}_{\mathrm{m}}=10$
B. $\mathrm{k}_{\mathrm{f}}=1000$ and $\mathrm{k}_{\mathrm{m}}=10$
C. $k_{f}=100$ and $k_{m}=100$
D. $k_{f}=100000$ and $k_{m}=100$

Active filters

- 1st order

- Low-pass: $K \frac{\omega_{C}}{S+\omega_{C}} \quad$ High-pass: $K \frac{S}{s+\omega_{C}}$

$$
\begin{aligned}
& C=1 F, R_{2}=1 \Omega, \\
& \text { passband gain } \\
& =12 \mathrm{~dB}, \\
& \text { What is value of } \\
& R_{1} \text { ? }
\end{aligned}
$$

A. 1Ω
B. 0.5Ω
C. 0.25Ω
D. 2Ω
E. 5Ω

A. 1
B. 10
C. 100
D. 1000
E. 10,000

$C^{\prime}=1 \mu \mathrm{~F}$,
$\omega_{c}^{\prime}=10 \mathrm{krad} / \mathrm{s}$ What is value of R_{1} ?

$$
\begin{aligned}
& R^{\prime}=k_{m} R \\
& L^{\prime}=\frac{k_{m}}{k_{f}} L \\
& C^{\prime}=\frac{C}{k_{m} k_{f}}
\end{aligned}
$$

A. 10Ω
B. 25Ω
C. 100Ω
D. 250Ω
E. $1,000 \Omega$

