EECE 290, Problem solving

Session 10

Use of dB's

 $A_{\rm dB} = 20 \log_{10}(|H(s)|) = 10 \log_{10}(|H(s)|^2), |H(s)| = 10^{A_{\rm dB}/20}$

TableForm=

signal ratio	power ratio	dB
0.1	0.01	-20.0
0.141421	0.02	-17.0
0.2	0.04	-14.0
0.3	0.09	-10.5
0.5	0.25	-6.0
0.707107	0.5	-3.0
1.	1.	0.0
1.41421	2.	3.0
2.	4.	6.0
3.	9.	9.5
5.	25.	14.0
7.07107	50.	17.0
10.	100.	20.0

In cascaded circuits signal and power ratio's are multiplied, dB-values are added.

A factor of 4 in signal voltages corresponds to?

- A. -12 dB
- B. -6dB
- C. 3 dB
- D. 6 dB
- E. 12 dB

 $A_{dB} = 20 \log_{10}(|H(s)|) = 10 \log_{10}(|H(s)|^2),$

TableForm= signal ratio power ratio dB 0.1 -20.0 0.01 0.141421 0.02 -17.0 0.2 0.04 -14.0 0.09 -10.5 0.3 0.5 0.25 -6.0 0.707107 0.5 -3.0 0.0 1. 1. 1.41421 2. 3.0 4. 6.0 2.

A factor of 1/1000 in powers corresponds to?

 $A_{dB} = 20 \log_{10}(|H(s)|) = 10 \log_{10}(|H(s)|^2),$

TableForm=		
signal ratio	power ratio	dB
0.1	0.01	-20.0
0.141421	0.02	-17.0
0.2	0.04	-14.0
0.3	0.09	-10.5
0.5	0.25	-6.0
0.707107	0.5	-3.0
1.	1.	0.0
1.41421	2.	3.0
2.	4.	6.0

- A. -60 dB
- B. -30 dB
- C. -15 dB
- D. 0 dB
- E. 30 dB

$A_{dB} = 20 \log_{10}(|H(s)|) = 10 \log_{10}(|H(s)|^2),$

- 2 dB corresponds to?

TableForm=		
signal ratio	power ratio	dB
0.1	0.01	-20.0
0.141421	0.02	-17.0
0.2	0.04	-14.0
0.3	0.09	-10.5
0.5	0.25	-6.0
0.707107	0.5	-3.0
1.	1.	0.0
1.41421	2.	3.0
2.	4.	6.0

- A. $\frac{1}{2}$ in powers
- B. ½ in voltages
- C. 0.7 in powers
- D. 0.8 in powers
- E. 0.7 in voltages
- F. 0.8 in voltages

- Scaling
 - circuit parameter expressions

 $R' = k_m R$ $L' = \frac{k_m}{k_f} L$ $C' = \frac{C}{k_m k_f}$

frequency expressions

 $\omega' = k_f \omega$ $B' = k_f B$ $\omega_0' = k_f \omega_0$ $Q' = \frac{\omega_0'}{B'} = Q$ $\frac{1}{R'C'} = \frac{k_f}{RC}$ $\frac{R'}{L'} = k_f \frac{R}{L}$ $\frac{1}{\sqrt{L'C'}} = k_f \frac{1}{\sqrt{LC}}$ $j \omega' L' = j k_m \omega L$ $\frac{1}{i \omega' C'} = \frac{k_m}{i \omega C}$

 $R' = k_m R$, $\omega' = k_f \omega$, $L' = \frac{k_m}{k_f} L$, and $C' = \frac{1}{k_m k_f} C$

For the normalized *RL* filter having $\omega_c = 1$ rad/s, *L* = 1 H, and *R* = 1 Ω , it is required to have $\omega_c = 1$ krad/s and *L* = 10 mH. What are the values of k_f and k_m?

- A. $k_f = 10000$ and $k_m = 10$
- B. $k_f = 1000$ and $k_m = 10$
- C. $k_{f} = 100 \text{ and } k_{m} = 100$
- D. $k_f = 100000$ and $k_m = 100$

Active filters

- Α. 1Ω
- Β. 0.5Ω
- C. 0.25Ω
- D. 2Ω
- Ε. 5Ω

-3.0

0.0

3.0

6.0

9.5

1/ 0

 v_o

- A. 1
- B. 10
- C. 100
- D. 1000
- E. 10,000

the second se

C'=1 μ F, ω_c '=10krad/s What is value of ω_c R₁'?

- Α. 10 Ω
- Β. 25 Ω
- C. 100 Ω
- D. 250 Ω
- Ε. 1,000 Ω

