EECE 290, Problem solving
 Session 8

Announcement: PSpice quiz will be on April 23rd, 6 PM-8 PM in SRB

$$
u(t) * u(t)=\text { ? }
$$

A. -1
B. 0
C. 1
D. t
E. t^{2}
F. $1 / 2 \mathrm{t}^{2}$

$$
u(t) * t u(t)=?
$$

A. -1
B. 0
C. 1
D. t
E. t^{2}
F. $1 / 2 \mathrm{t}^{2}$
A.
B.
C.
D.
E.
F.

What is the extent in the time domain of the convolution?
A. 0.5
B. 1
C. 1.5
D. 2
E. 2.5
F. 3
$f(t)$ is the convolution of the functions shown. What is the value of $f(3)$?
A. 0.5
B. 1
C. 1.5
D. 2
E. 2.5
F. 3

The response of this circuit is

A. Lowpass
B. Highpass
C. Bandpass
D. Bandstop

$$
H_{R}(j \omega)=\frac{V_{R}(j \omega)}{V_{\mathrm{SRC}}(j \omega)}
$$

$R=1 \mathrm{k} \Omega, \mathrm{C}=2 \mathrm{mF}$. The half power angular cutoff frequency ω_{c} is

A. $2 \mathrm{rad} / \mathrm{s}$
B. $1 \mathrm{rad} / \mathrm{s}$
C. $0.5 \mathrm{rad} / \mathrm{s}$
D. $20 \mathrm{rad} / \mathrm{s}$
E. $5 \mathrm{rad} / \mathrm{s}$
$H(j \omega)=V_{o} / V_{s}, R=1 \mathrm{k} \Omega, L$
$=0.5 \mathrm{mH}$. The half power angular cut-off
 frequency ω_{c} is
A. $1000 \mathrm{rad} / \mathrm{s}$
B. $1 \mathrm{Mrad} / \mathrm{s}$
C. $0.5 \mathrm{mrad} / \mathrm{s}$
D. $2 \mathrm{Mrad} / \mathrm{s}$
E. $5 \mathrm{krad} / \mathrm{s}$
$H(j \omega)=I_{2} / I_{s}, R=1 \mathrm{k} \Omega$, $\mathrm{L}=0.5 \mathrm{mH}$. The half power angular cut-off
 frequency ω_{c} is
A. $1000 \mathrm{rad} / \mathrm{s}$
B. $1 \mathrm{Mrad} / \mathrm{s}$
C. $0.5 \mathrm{mrad} / \mathrm{s}$
D. $2 \mathrm{Mrad} / \mathrm{s}$
E. $5 \mathrm{krad} / \mathrm{s}$

