EECE 290, Problem solving

Session 4

using rms values: $S=V I^{*}=P+\mathrm{j} Q=\left.Z\left|I^{2}=(R+\mathrm{jX})\right| I\right|^{2}=Y^{*}|V|^{2}=(G-\mathrm{jB})|V|^{2}$

For a capacitance,

A. $P>0, Q=0$
B. $P=0, Q>0$
C. $P=0, Q<0$
D. $P<0, Q=0$

using rms values: $S=V I^{*}=P+\mathrm{j} \mathrm{Q}=\left.Z\left|I^{2}=(R+\mathrm{j} \mathrm{X})\right| I\right|^{2}=Y^{*}|V|^{2}=(G-\mathrm{jB})|V|^{2}$

$$
|S|=50 \mathrm{kVA}, P=40 \mathrm{~kW},|\mathrm{Q}|=?
$$

A. 10 kVAR
B. 20 kVAR
C. 30 kVAR
D. 40 kVAR
E. 50 kVAR

using rms values: $S=V I^{*}=P+\mathrm{jQ}=\left.Z\left|I^{2}=(R+j \mathrm{X})\right| I\right|^{2}=Y^{*}|V|^{2}=(G-\mathrm{jB})|V|^{2}$
Over a 1 mF capacitance the rms voltage is 4 V with $\omega=100 \mathrm{rad} / \mathrm{s}$, what is the value of Q ?
A. -0.4 VAR
B. -1.6 VAR
C. 1.6 VAR
D. 0.4 VAR

0\%	0\%	0\%	0\%	
\cdots	∞	P	\longleftrightarrow	
00^{001}	$\alpha^{60^{20}}$		$0^{+0^{80}} 20$	

using rms values: $S=v I^{*}=P+j \mathrm{Q}=\left.Z\left|I^{2}=(R+j \mathrm{X})\right| I\right|^{2}=Y^{*}|V|^{2}=(G-j \mathrm{~B})|V|^{2}$

A load absorbs 1-j kVA. In order to get $\mathrm{pf}=1$, we must?

A. Put a capacitance in series.
B. Put a capacitance in parallel.
C. Put an inductance in parallel or series
D. Put a resistance in series.

using rms values: $S=V I^{*}=P+\mathrm{jQ}=Z|I|^{2}=(R+j \mathrm{X})|I|^{2}=Y^{*}|V|^{2}=(G-\mathrm{jB})|V|^{2}$
A current source of $0.1 \mathrm{~A}_{\text {rms }}$, a capacitance of $-j 4 \Omega$ and an inductance of $j 2 \Omega$ are connected in series, what is the value of S ?
A. j 20 mVA
B. -j 20 mVA
C. -j 2 mVA
D. j 2 mVA

$Z_{\text {src }}=2+j 2 \Omega$, for maximum power transfer, $\mathrm{Z}_{\mathrm{L}}=$?

A. $2+j 2 \Omega$
B. $2-\mathrm{j} 2 \Omega$
C. $-2+j 2 \Omega$
D. $-2-\mathrm{j} 2 \Omega$

$Z_{\text {src }}=2+j 2 \Omega, Z_{L}$ has the value for maximum power transfer, how much power $\mathrm{v}_{\text {sec }}(\stackrel{+}{\underset{\sim}{\sim}}$ is transferred?

$V_{s r c}$ is the amplitude.
A. $V_{s r c}{ }^{2} / 16$
B. $V_{s r c}{ }^{2} / 4$
C. $V_{s r c}{ }^{2} / 2$
D. $2 V_{s r c}{ }^{2} / \sqrt{2}$

