AMERICAN UNIVERSITY OF BEIRUT

Mathematics Department MATH 218 - QUIZ III Fall 2008-2009

Directions:	
• This is a partial assessment of what you are	learning in this course. Read carefully and
write down what you know.	
• The exam is meant to detect any gaps in ye	our knowledge so that they are corrected.
Show your thought process in the minimum n	number of sentences.
• You have 70 minutes. Finish as much as poss	sible. Work quickly but accurately.
• Do not forget to write down your name and	circle your section number.
Name:	ID:
Section: 5 (@ 9:30) 4 (@ 12:30)	

Question	Number of parts and subparts	Grade
I	2	/24
П	3	/25
III	1	/12
IV	3	/24
V	3	/15

Total Grade = /100

I- (a) (12 points) Determine whether the set of all 3×3 matrices, \mathcal{M}_{33} , is a vector space under the following addition and scalar multiplication:

$$A + B = A + B + I_2$$

and

$$k \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} (k+1)a & (k+2)b \\ (k+3)c & (k+4)d \end{bmatrix}$$

Note: In the above definition of addition, the plus sign on the left is the new addition operation, and the one on the right is the standard addition operation.

Yet
$$u \in M_{22}$$

$$u = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

$$1 u = \begin{bmatrix} (1+1)a & (1+2)b \\ (1+3)c & (1+4)d \end{bmatrix} = \begin{bmatrix} 2a & 3b \\ 4c & 5d \end{bmatrix} + \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

So lutu

Therefore M22 with the above two operations is not a vector space.

(b) (12 points) Let W be the set of all polynomials of degree **exactly 4**. Determine whether W is a subspace of the set of polynomials of degree less than or equal to 4, \mathcal{P}_4 .

$$W = \left\{ \begin{array}{l} \rho(x) \in P_4 \mid \rho(x) \text{ has degree 4} \right\} \\ = \left\{ \begin{array}{l} a_1 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4 \text{ such that} \\ a_2, a_1, a_2, a_3, a_4 \in \mathbb{R} \\ \text{and } a_4 \neq 0 \end{array} \right\}$$

$$1+x+x^{4} \in \mathbb{V}$$

$$2-x^{3}-x^{4} \in \mathbb{V}$$

$$(1+x+x^{4})+(2-x^{3}-x^{4})=3+x-x^{3} \notin \mathbb{V}$$

5 points for correct application of the

II- (a) (i) (10 points) Find a basis for the space spanned by the vectors $v_1 = (1, 3, 5, 9, 7)$, $v_2 = (2, 4, 6, 12, -2)$, $v_3 = (3, 7, 11, 21, 5)$, $v_4 = (2, 8, 5, 1, 0)$ which is a subset of $\{v_1, v_2, v_3, v_4\}$.

$$\begin{bmatrix} 1 & 2 & 3 & 2 \\ 3 & 4 & 7 & 8 \\ 5 & 6 & 11 & 5 \\ 9 & 12 & 21 & 1 \\ 7 & -2 & 5 & 0 \end{bmatrix} \xrightarrow{\begin{bmatrix} 1 & 2 & 3 & 2 \\ 0 & -2 & -2 & 2 \\ 0 & -4 & -4 & -5 \\ 0 & -6 & -6 & -17 \\ 0 & -16 & -16 & -14 \end{bmatrix}} \xrightarrow{\begin{bmatrix} 1 & 2 & 3 & 2 \\ 0 & 1 & 1 & -1 \\ 0 & 4 & 4 & 5 \\ 0 & 6 & 6 & 17 \\ 0 & 16 & 16 & 14 \end{bmatrix}}$$

{v, v, v, v;) is a basis for Spape {v, v, v, v, v, }

(ii) **(5 points)** Write any vector that is not in the basis as a linear combination of vectors in the basis.

(b) (10 points) Find a basis for the space W consisting of vectors (a,b,c) such that

(a, b) is a solution of the system
$$\begin{cases} 2x_1 & +16 \ x_2 = 0 \\ 3x_1 & +24 \ x_2 = 0 \\ -4x_1 & -32 \ x_2 = 0 \end{cases}$$

$$\begin{bmatrix} 2 & 16 & 0 \\ 3 & 24 & 6 \\ -4 & -32 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 8 & 0 \\ 1 & 8 & 0 \\ 1 & 8 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 8 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$x_1 = -8x_2 = -8t$$

$$x_2 = t$$

$$t \in \mathbb{R}$$

$$2 \qquad (a,b) = (-8t,t)$$

$$W = \{(a,b,c) \text{ where } a = -8t, b = t \text{ and } t \in \mathbb{R}\}$$

$$(a,b,c) = (-8t,t,c)$$

$$= t(-8,1,0) + c (0,0,1)$$

$$So \{(-8,1,0), (0,0,1)\}$$
 spans W

None of the two vectors is a multiple of 1 the other so

III- (12 points)

Prove that if the rank of an $m \times n$ matrix A is m then $ColumnSpace_A = \mathbb{R}^m$.

IV- Answer each of the following questions. Give justifications for your answers.

(a) (8 points) Consider \mathbb{R}^2 with the inner product $\langle u, v \rangle = 3u_1v_1 + 5u_1v_1$. Use the Gram Schmidt process to transform the given basis $u_1 = (2, -1)$, $u_2 = (1, 1)$ into an **orthogonal** basis.

9
$$v_{1} = (2, -1)$$

2 $v_{2} = u_{2} - Proj u_{2}$ where $W = Span\{v_{1}\}$

$$= u_{2} - \frac{\langle u_{2}, v_{1} \rangle}{||v_{1}||^{2}} v_{1}$$

$$= (1, 1) - \frac{3 \times 2 \times 1 + 5 \times (-1) \times 1}{3 \times 2 \times 2 + 5 \times (-1) \times (-1)} (2, -1)$$

$$= (1, 1) - \frac{1}{17} (2, -1)$$

$$1 = (\frac{15}{17}, \frac{18}{17})$$

(b) (8 points) Given a space V with the usual Euclidean inner product and a subspace W of V with the basis $\{(1,2,3),(3,0,-1)\}$. Find the projection of (2,-7,3) on W.

$$\begin{cases} (1/2,3), (3,0,-1) \end{cases} \text{ is orthogonal}$$

$$\begin{cases} Proj (2,-7,3) = \frac{2-14+9}{1+4+9} (1,2,3) + \frac{6+0-3}{9+0+1} (3,0,-1) \\ = \frac{-3}{14} (1,2,3) + \frac{3}{10} (3,0,-1) \\ = (\frac{-3}{14} + \frac{3}{10}, \frac{-3}{7}, \frac{-9}{14} - \frac{3}{10}) = \end{cases}$$

(c) (8 points) Find the orthogonal complement of the space spanned by the vectors $(1,2,0,0,3), (0,0,0,1,1), (0,0,3,0,1), (0,0,0,0,\sqrt{2})$

$$\begin{bmatrix}
1 & 2 & 0 & 0 & 3 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 0
\end{bmatrix}$$

$$x_5 = 0$$

 $x_4 = 0$
 $x_5 = 0$
 $x_4 = 0$
 $x_5 = 0$

- V- Give a short answer to each of the following. JUSTIFY.
 - 1. (5 points for each answer) The nullity of an $n \times n$ matrix whose entries are all ones is:

$$\begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

there are N-1 free variables din (Null Space) = nullity of the matrix = n - 1

2. (5 points for each answer) Can an overdetermined system Ax = b be consistent for every possible b?

Ax=b is consistent for all b <=> Column vectors of A span Rm

overdetermined system has more equation, than unknowns so the number of column vectors is less than on therefore, the column vectors can not span R^m. So such a system can't be consistent \forall b.

3. **(5 points for each answer)** If the vectors u, v, w are three vectors orthogonal to a space W, can you conclude that the space spanned by u, v, and w is orthogonal to W?

u, v, w are othogonal to W Any element in Span {u, v, w} has the form

ku+kv+kw

= 0 + 0 + 0 GOOD LUCK

Small w'EW

So any element in Span {u,v,w} is orthogonal to W.