
Introduction to Computation 
and Programming

Miscellaneous topics: files,  exceptions, 
plotting, randomness, and Monte Carlo 

simulation 

EECE 230 - Introduction to Computation and Programming 

Slides prepared for EECE 230C, Fall 2018-19, MSFEA, AUB

Material on plotting added during the offering of EECE 230,  Spring 2018-19, MSFEA, AUB

Material in these slides is based  on [Guttag, Chapters 4,  7, 11, and 16],                                                                       
[MIT OpenCourseWare, 6.0001, Lecture  7, Fall 2016], and matplotlib tutorial 

Reading:  [Guttag, Sections 4.6, 7.1, 7.3, 11.1,16.4]

https://matplotlib.org/users/pyplot_tutorial.html


Outline

I. Files: 
Handling files in Pyhon
Reading, writing, and appending 

II. Exceptions and assertions:  
 try-except statement to handle exceptions    
 assert statement 

III. Plotting in Python 

IV. Generating random numbers in Python

V. Monte Carlo Simulation: approximating 𝜋

EECE 230 - Introduction to Computation and Programming 



I. Files 

EECE 230 - Introduction to Computation and Programming 



I. Handling files in python

General structure: 
nameHandle = open(fileName, mode)

#process the file and when done close it: 

nameHandle.close()

• fileName : string containing the name of the file, e.g., “File3.txt” or 
“D:/HOME/…./File3.txt”

• mode:  ‘r’ for  reading, ‘w’ for writing , and ‘a’  for     appending. There are also 
other modes we  will not work with

• nameHandle: file handle returned by the open function 

EECE 230 - Introduction to Computation and Programming 



I. Reading a file in a one shot: read method  

nameHandle = open(fileName, ‘r’)
# The file pointer is now in the beginning of the file 
# Read the whole file into a single string s: 
s = nameHandle.read()
# Now the pointer is at the end of the file 
nameHandle.close()
# process the string s

• Example: write a function to display file, given fileName

EECE 230 - Introduction to Computation and Programming 



I. Reading files in a one shot: read method 
(Continued)  

EECE 230 - Introduction to Computation and Programming 



I. Reading files line by line 

nameHandle = open(fileName, ‘r’)

# Python can view the file as sequence of lines, each line is a string 

for line in nameHandle:

# Process line, which is of type string 

nameHandle.close()

Example: write a function to display file with line numbers, given 
fileName

EECE 230 - Introduction to Computation and Programming 



I. Reading a file line by line (Continued)  

EECE 230 - Introduction to Computation and Programming 

To avoid double new 
lines: as a string, line 
ends with ‘\n’ 
(except possibly for 
the last line) 



I. Writing on a file: write method 

nameHandle = open(fileName, ‘w’)

# A new file is created and file pointer is at  the beginning of the file

nameHandle.write( input argument s of type string)

# Now the file consists of s and pointer moved

# Use write method again to write another string and so on 

# When done close (otherwise, some writes may not be saved) 

nameHandle.close()

EECE 230 - Introduction to Computation and Programming 



I. Writing on a file: write method (Continued) 

Content of testingWrite.txt:

EECE 230 - Introduction to Computation and Programming 



I. Writing on a file: write method (Continued) 

Content of testingWrite.txt:

abcde

f g

EECE 230 - Introduction to Computation and Programming 



I. Append mode

• What if the file you want to write on already exists and instead of 
overwriting  you want to append new strings?

• Instead of 

nameHandle = open(fileName, ‘w’)

use 

nameHandle = open(fileName, ‘a’)

• It will create a new file only if the file doesn’t exist 

EECE 230 - Introduction to Computation and Programming 



II. Exceptions 

EECE 230 - Introduction to Computation and Programming 



II. Back to read mode

• What if the file we are trying to read doesn’t exist?

• Python script will crash/terminate with a:

FileNotFoundError: [Errno 2] No such file or directory

• This is a good thing as we don’t program to continue in  abnormal 
situations 

• This is an unhandled exception raised by Python.

• Exception: “something that does not conform to the norm”

• We can handle exceptions

EECE 230 - Introduction to Computation and Programming 



II. Other  common exceptions 

• Include:
TypeError:  e.g., 1/”abc”
IndexError: e.g., L=[ “a”,”b” ] and then try to access L[2]
ValueError: e.g., int("abc")    (int(“12") works fine) 
ZeroDivisionError: e.g., 1/0

EECE 230 - Introduction to Computation and Programming 



II. Handling exceptions: try-except statement: 
basic structure  
try: 

Code Block A

except: 

Code Block B   

will be executed if an   

exception was raised in  

Code Block A, instead of 

program crashing

EECE 230 - Introduction to Computation and Programming 

try: 

Code Block A

except Error_1: 

Code Block B_1

….  

except Error_k: 

Code Block B_k: will execute only if   

Error_k was raised   in Block A

…

except: 

Code Block B: will execute if an exception   

other than all the above was raised in 

Block A     



II. Handling Exceptions: Example 1: 
FileNotFoundError
Let’s say that instead of program crashing if file not found, you want to 
handle the situation as follows: 

Write function readFile(fileName), which given the name of file,  tries to 
read it single shot using the read method and returns the  tuple 
(s,fileFound), where: 

• If the file is found, fileFound should be  True, and s a string  consisting of 
the file’s content 

• If the file is not found, fileFound should be  False, and s is the empty  
string  “”. The function should also display message “Cannot open file! ”   

EECE 230 - Introduction to Computation and Programming 



II. Handling Exceptions: Example 1: IOError: 
file name not found (Continued)  

EECE 230 - Introduction to Computation and Programming 



II. Handling Exceptions: Example 2: ValueError
and ZeroDivisionError

EECE 230 - Introduction to Computation and Programming 

• Consider: 

• Two possible exceptions: 
 ValueError: if user enters non-integer values
 ZeroDivisionError: if b is zero  
• Le’t say that instead of program crashing, you want to handle those 

exceptions by insisting that the user enters good values 



II. Handling Exceptions: Example 2: ValueError
and ZeroDivisionError: Solution 1  

EECE 230 - Introduction to Computation and Programming 



II. Handling Exceptions: Example 2: ValueError
and ZeroDivisionError: Solution 2  

EECE 230 - Introduction to Computation and Programming 



II. Assertions

• Raising exceptions: raise statement

• Will focus on   assert statement, which specifically raises an 
AssertionError

• Syntax: 

assert Boolean expression, “error message”

• If Boolean expression evaluates to False, program terminates with :

AssertionError: error message

• Useful to confirm that the arguments to a function are of appropriate 
types and/or satisfy certain conditions 

EECE 230 - Introduction to Computation and Programming 



II. Assertions: example 

EECE 230 - Introduction to Computation and Programming 

Consider: 



II. Assertions: example (Continued) 

Add assertion to terminate program if conditions not met: 

EECE 230 - Introduction to Computation and Programming 

Assert won’t cause an error  if L is not a 
list due to short circuit evaluation of and 
operator: If first operand is False, the 
second won’t be evaluated 



III. Plotting  

EECE 230 - Introduction to Computation and Programming 



III. Plotting graphs in Python 

EECE 230 - Introduction to Computation and Programming 

• First you need to import the plotting module:

import matplotlib.pyplot as plt

• To make sue that the figures do not appear inside the Python console:

Go to Tools> Preferences>IPython console > Graphics > Graphics 
backend, and set Backend to Automatic. 

You need to restart the kernel for this change to take effect.



III. Plotting graphs in Python (Continued)  

EECE 230 - Introduction to Computation and Programming 

• Let X and Y be lists of numbers of the same length. 

• To plot Y as a function of X, use 

plt.plot(X,Y,color)
where color is a string taking values such as "k" (for black), "r" (for red), “b” for 
blue, etc.. See the  documentation of plot for other colors. 

• The plot function plots the points (X[i], Y [i]), for i = 0,…,len(X), connected by lines 
of colors color. 

• To include labels on the x-axis and the y-axis, use 

plt.xlabel(“x label text") 
plt.ylabel(“y label text")

• To include a title, use 
plt.title(“title  text")

https://matplotlib.org/api/_as_gen/matplotlib.pyplot.plot.html


EECE 230 - Introduction to Computation and Programming 

III. Example 1 



EECE 230 - Introduction to Computation and Programming 

III. Example 2 



EECE 230 - Introduction to Computation and Programming 

III. To clear a  figure

To clear the figure, use plt.clf(), e.g., 



EECE 230 - Introduction to Computation and Programming 

III. Plotting on multiple figures

• To plot on a new or 
existing figure whose 
index is i, use 

plt.figure(i) 

before invoking plt.plot

• The default value of  i = 
1, i.e., can skip Line 34  

• To close Figure i, use
plt.close(i) 



III. Plotting on multiple figures (Continued) 

EECE 230 - Introduction to Computation and Programming 



III. Subplots 

EECE 230 - Introduction to Computation and Programming 

To plot on the same figure multiple 
graphs with tiled axes, use 

plt.subplot(m,n,i) 

before invoking plt.plot,  where: 
• m is the desired number of rows 
• n number of columns
• i the graph index:  i=1 (upper left), …,  

m ×n (lower right) 



III. Subplots (Continued)  

EECE 230 - Introduction to Computation and Programming 



III. Plot the graph 𝑦 = 𝑥2 for 0 ≤ 𝑥 < 2

EECE 230 - Introduction to Computation and Programming 



III. Plot the graph 𝑦 = 𝑥2 for 0 ≤ 𝑥 < 2

EECE 230 - Introduction to Computation and Programming 



III. Plot the graph 𝑦 = 𝑥2 for 0 ≤ 𝑥 < 2

EECE 230 - Introduction to Computation and Programming 



III. Plotting data from txt file

EECE 230 - Introduction to Computation and Programming 

• Say that we are given text file data.txt with x and y measurements each 
on a line , e.g., 

1.3 2.13
2 3.16
5  7.20
8.3 -6.0
11.1  10.4

• Plot y versus x 



III. Plotting data from txt file

EECE 230 - Introduction to Computation and Programming 

• Say that we are given text file data.txt with x and y measurements each 
on a line , e.g., 

1.3 2.13
2 3.16
5  7.20
8.3 -6.0
11.1  10.4

• Plot y versus x 



III. Plotting data from txt file 

EECE 230 - Introduction to Computation and Programming 



III. Useful tools for plotting  functions: legend

• When plotting multiple functions  on the same 
figure, it helps to include a legend to label the 
functions: when creating a plot, you can add a 
label 

plt.plot(X,Y,label=“myLabel”), 

which will appear when your code invokes

plt.legend().

• Example: 

EECE 230 - Introduction to Computation and Programming 



III. Useful tools for plotting  functions: 
logscale
• If some  y-values are relatively very large, use log scale on the y-axis: 

plt.yscale(‘log’)

• Example:  

EECE 230 - Introduction to Computation and Programming 



III. Matplotlib module  

• For more on the matplotlib.pyplot library, check the tutorial 
https://matplotlib.org/users/pyplot_tutorial.html

• It has many plotting tools. For instance, below are some useful 
plotting tools which you may want to check (not included in 
assignments or exams):   
• In plt.plot, you can specify  line style and markers in addition to color. You can also skip the 

color string and rely on python to appropriately choose colors. 
• numpy.linspace function   (read about numpy ndarrays, which are like python lists, but with 

all  elements of the same type)   

EECE 230 - Introduction to Computation and Programming 

https://matplotlib.org/users/pyplot_tutorial.html
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.plot.html
https://docs.scipy.org/doc/numpy/reference/generated/numpy.linspace.html


IV. Generating random numbers  

EECE 230 - Introduction to Computation and Programming 



IV. Generating random numbers in Python

• Import the numerical python module: numpy

import numpy.random as rand

• Basic random functions:  
 rand.uniform(x,y): generates a uniformly random float in the real 

interval [x,y] (default x=0 and y=1)

 rand.randint(a,b+1): generates a uniformly random integer 
between a and  b inclusive 

EECE 230 - Introduction to Computation and Programming 



IV. Generating random numbers in Python 
(Continued) 

• Multiple runs give 
different random 
numbers:  

• Where does the 
randomness  come from? 

EECE 230 - Introduction to Computation and Programming 



IV. Randomness in computation 

• In this course, we will see multiple applications of  randomness in 
computation

• First application: Monte Carlo simulation  

EECE 230 - Introduction to Computation and Programming 



V. Monte Carlo simulation

EECE 230 - Introduction to Computation and Programming 



V. Monte Carlo simulation

• Monte Carlo simulation is a technique used to approximate the 
probability of an event by random sampling  multiple times and 
averaging the results. 

• We will see how Monte Carlo simulation can be used to solve a 
problems that are not inherently stochastic: 

Approximate 𝜋

EECE 230 - Introduction to Computation and Programming 



V. Approximating 𝜋

• Consider the unit circle inscribed in the unit square:

EECE 230 - Introduction to Computation and Programming 

Figure 16.5 in [Guttag, page 356]



V. Approximating 𝜋 (Continued) 

• Key  observation: 
𝜋

4
= 

area of unit circle

area of unit square

= probability 𝒑 that a random point of the unit square belongs to the  unit circle

• Thus 𝜋 = 4 × 𝒑

• Hence,  to approximate 𝜋:
Choose n points  𝑥1, 𝑦1 , 𝑥2, 𝑦2 , … . , 𝑥𝑛, 𝑦𝑛 in the unit square: choose  
−1 ≤ 𝑥𝑖≤ 1 and −1 ≤ 𝑦𝑖≤ 1 uniformly at random for 𝑖 = 1,… , 𝑛

Find number 𝑚 of points in the unit circle 
Return 4𝑚/𝑛 (as 𝑚/𝑛 is an approximation of 𝒑 )

• For large n,  get an approximation of 𝜋

EECE 230 - Introduction to Computation and Programming 



V. Approximating 𝜋 (Continued) 

• Key  observation: 
𝜋

4
= 

area of unit circle

area of unit square

= probability 𝒑 that a random point of the unit square belongs to the  unit circle

• Thus 𝜋 = 4 × 𝒑

• Hence,  to approximate 𝜋:
Choose n points  𝑥1, 𝑦1 , 𝑥2, 𝑦2 , … . , 𝑥𝑛, 𝑦𝑛 in the unit square: choose  
−1 ≤ 𝑥𝑖≤ 1 and −1 ≤ 𝑦𝑖≤ 1 uniformly at random for 𝑖 = 1,… , 𝑛

Find number 𝑚 of points in the unit circle 
Return 4𝑚/𝑛 (as 𝑚/𝑛 is an approximation of 𝒑 )

• For large n,  get an approximation of 𝜋

EECE 230 - Introduction to Computation and Programming 



V. Approximating 𝜋 (Continued) 

EECE 230 - Introduction to Computation and Programming 

Output:

Approximate pi: 3.1452

Absolute value of error: 
0.0036073464102068797 



V. Approximate 𝜋 as a function of 𝑛

• You will generate plots like the above (not the same!)  in  the next solving 
session 

EECE 230 - Introduction to Computation and Programming 


