1. $(56 \%)$ Determine if the series below converge or diverge. In case of an alternating series, check whether the series converges absolutely, conditionally, or diverges:
(a) $\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^{3}}$
(b) $\sum_{n=1}^{\infty}\left(1+\frac{3}{n}\right)^{n}$
(c) $\sum_{n=1}^{\infty} \frac{(0.8)^{n}}{n!}$
(d) $\sum_{n=1}^{\infty} \frac{e^{n}}{1+e^{2 n}}$
(e) $\sum_{n=1}^{\infty} \frac{n}{\left(n^{1 / n}+8\right)^{n}}$
(f) $\sum_{n=1}^{\infty} \frac{(-1)^{n}(n+5)}{n^{2}+1}$
(g) $\sum_{n=1}^{\infty} \frac{|\sin n|}{n\left(n^{2}+\sqrt{n}+1\right)}$
2. $(8 \%)$ Use series to write the number $0 . \overline{213}$ as a ratio $\frac{m}{n}$ of two nonzero integers. Show your work
3. (6\%)Find two series: $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ with positive terms such that:

$$
a_{n} \rightarrow 0, b_{n} \rightarrow 0, \sum_{n=1}^{\infty} a_{n} \text { converges, } \sum_{n=1}^{\infty} b_{n} \text { diverges }
$$

4. Consider the series: $\sum_{n=1}^{\infty}\left(\frac{-1}{2}\right)^{n}$
(a) $(2 \%)$ Find the fourth partial sum $s_{4}$.
(b) $(3 \%)$ Estimate the magnitude of the error involved in using $s_{4}$ to approximate the sum of the entire series
(c) $(3 \%)$ Find the sum of the series:(that is, the limit to which it converges)
(d) (2\%) Deduce using parts a and c above the exact error involved in using $s_{4}$ to approximate the sum of the entire series.
5. $(10 \%)$ Find the sum of the series:

$$
\sum_{n=1}^{\infty} \frac{3}{(n+1)(n+2)}
$$

6. $(10 \%)$ For what values of $x$ does the series $\sum_{n=1}^{\infty} \frac{(3 x-2)^{n}}{n}$ converge?
7. $(5 \%)$ BONUS : Give an example of a power series that converges for all $x \in \mathbb{R}$.
