CIE200 Statics - Fall 2013

FINAL EXAM

Closed Book, 180 Minutes 25-Jan-2014

All the following apply in this exam

- Every FBD needed for the solution of a problem should be clearly drawn.
- Points will be deducted for equilibrium equations that do not have a corresponding FBD or an incomplete/ incorrect FBD.
- Show all your calculations.
- Points will be deducted for answers that are not supported by proper calculations.
- Check that you have all 4 problems in this booklet.
- If you need extra space you can write on the back any sheet.
- Method A is the method of cuts and FBDs and Method B is the method of relations

Name:	M. TABBARA	
	•	
ID Number:	SOLUTION	

Problem	1	2	3	4	5	6	7	8	
Score					-			1	
Points	10	10	10	10	10	15	20	15	100

Beam AB is supported by a hinge at A and a roller at B. Draw shear and moment diagrams for AB using Method B; any other method will not count.

Beam AC is supported by a hinge at A and a roller at B. Draw shear and moment diagrams for AC using Method B; any other method will not count.

The shear and moment diagrams for beam AB are shown below. Determine and draw the loading that acts on the beam.

$$\frac{7.5+2.5}{2.0} = 5$$

$$\frac{1}{2}(2.5+12.5)$$
 $d_2 = 15, d_2 = 2.0$

Beam AB is supported by a hinge at A and a roller at B. Determine the:

- (a) Slope to the moment diagram at C
- (b) Concavity of the moment diagram at C

SLOPE CONCAVITY

$$\frac{d1}{dx} = V \qquad \frac{d^2H}{dn^2} = \frac{dV}{dn} = -\omega$$

$$1 = F_y = 0$$
: $V_c - \frac{1}{2} \times 2 \times 3 + 4 = 0$) $V_c = -1$

Cable AC and spring AB are connected at A. The original (unstretched) length of spring AB is 0.66 m and the spring constant k = 1000 N/m. Determine the weight of the block.

$$\frac{+}{\Rightarrow} = F_{x} = 0: \frac{0.4}{\sqrt{0.2825}} T_{AC} - \frac{0.6}{\sqrt{0.4825}} 34.62 = 0, T_{AC} = 39.736$$

$$\uparrow^{+} = F_{y} = 0: \frac{7_{AC}}{\sqrt{0.2825}} - W = 0, W = 43.61$$

$$\uparrow^{+} = F_{y} = 0: \frac{7_{AC}}{\sqrt{0.2825}} - W = 0, W = 43.61$$

$$\uparrow^{-} = \frac{39.736}{\sqrt{0.4825}} - \frac{34.62}{\sqrt{0.4825}} = \frac{0.35}{\sqrt{0.4825}}$$

The truss shown below has a hinge at A, a pulley at E and a pulley at C. The radius of the pulley is 0.5 and the weight W = 10. Determine the axial force in member BE.

Three members AD, BF and CE are connected by pins at B, C and E. Supports are a hinge at A and a roller at D. The radius of the pulley is 0.5 m and is connected by a pin at F. Determine all the forces that act on member AD and draw its updated FBD.

For the rectangular area shown below:

(a) The moment of inertia about the centroid = $BH^3/12$. Determine the moment of inertia about the $I_b = \frac{BH^3}{12} + Ad^2$ $BH = \frac{BH^3}{3}$ base of the rectangle.

For the composite area shown below:

- (b) Determine the coordinates of the centroid
- (c) Determine the moment of inertia about the X-axis

