\qquad

PROB-1-

Draw the moment and shear diagrams.

PROB-2-

Cable AB exerts a force of 80 N on the end of the $3-\mathrm{m}$ long boom OA. Determine the magnitude of the projection of this force along the boom.

PROB-3-

The device shown is used to straighten the frames of wrecked autos. Determine the tension of each segment of the chain, i.e., AB and BC , if the force which the hydraulic cylinder DB exerts on point B is 3.50 kN .

PROB-4-

The applied force \mathbf{F} creates a moment about point P of $\mathbf{M}_{\mathbf{P}}=\{-\mathbf{1} \mathbf{i}-\mathbf{3} \mathbf{j}-9 \mathbf{k}\}$ lb.in. If $\mathrm{a}=3 \mathrm{in}$, determine the dimensions b and c of the block.

PROB-5-

Determine the location of the x and y centroidal axes and the moment of inertia about the x and y centroidal axes.

PROB-6-

Two couples act on the frame. If d $=4 \mathrm{ft}$, determine the resultant couple moment.

PROB-7-

Replace the force system acting on the frame by an equivalent resultant force and couple moment acting at point A .

PROB-8-

Draw the moment and shear diagram for the
 beam shown below.

PROB-9-

Determine the bar forces in members CD, BG, and DF.

PROB-10-

A block that weights 500 N , is supported by a system of cables. Determine the tensions in cables A, B, and C.

