Date: December 9, 2011, 06:30 p.m.
Duration: 80 minutes

Name	SOLUTION
ID \#	

	Show all calculations, and indicate the proper units
	All problem solutions must include an FBD
	Closed book and notes
	Assume any missing information that is necessary
	Questions have weights as indicated
	Do not unstaple the exam booklet
	Exam booklet consists of 11 pages

Problem I (30\%)

Draw the free-body diagram (FBD) of the frame member CDE showing all forces acting on it (magnitude and direction).

 $0.6+\tan (15))-120 \times(0.4+0.6 \operatorname{ten}(15))$
$=0$

$$
\Rightarrow N_{E}=197.73 \mathrm{~N} .
$$

$$
\frac{\sum \begin{array}{l}
\sum f_{x}=A_{x}-E \operatorname{rin}(60)=0 \Rightarrow A_{x}=A 1.24 \mathrm{~N} \\
\sum F_{y}=A_{y}-240-120+E \cos (60)=0 \Rightarrow A_{y}=201.14 \mathrm{~N}
\end{array}}{\text { From } F B D(3):}
$$

\because

$$
\begin{gathered}
S \|_{B}=-120 \times 0.1+C_{y} \times 0.3+N_{E} r(30) \times 0.3=0 \\
C_{y}=-58.86 \mathrm{~N} . \\
C_{y}=58.86 \mathrm{~N} \uparrow
\end{gathered}
$$

From $\overrightarrow{F B D}$ (1):
$\stackrel{+}{7}$

$$
\begin{aligned}
& \sum \Pi_{B}=C_{y} \times 0.08+A_{x} \times 0.5-C_{x} \times 0.3-A_{y} \times 0.08=0 \\
& -58.86 \times 0.08+171.24 \times 0.8-0.3 C_{x}-261.14 \times 0.08=0 \\
& \quad \Rightarrow C_{x}=\frac{-4.71+31.37-20.89}{0.3}=85.91 \mathrm{~N} .
\end{aligned}
$$

From f BD 3:

$$
\begin{aligned}
\Sigma F_{x}=-C_{x}-B_{x}-N_{\bar{E}} \cos (30)=0 \Rightarrow B_{x} & =-85.97-197.73 \\
& =-257.15 \mathrm{~N} \\
B_{x} & =257.15 \mathrm{~N} \Rightarrow
\end{aligned}
$$

$$
\Sigma f_{y}=-C_{y}-360-B_{y}+N_{E} \begin{gather*}
\text { Page 3 of } 11 \tag{30}\\
\mathrm{~mm}^{\prime}(30)
\end{gather*}=0 \Rightarrow B_{y}=58.86-360+197.73
$$

$$
\Rightarrow B=327.16 \mathrm{~N} \Rightarrow B_{y}=-202.27 \mathrm{~N}
$$

Problem II (20\%)

Replace the force and couple-moment system by an equivalent resultant force and specify its coordinate point of application $(0, y)$ on the y-axis.

$$
\begin{aligned}
\xrightarrow{\oplus} F_{R_{x}}=\Sigma F_{x} & =-20-50 \times \frac{3}{5} \\
& =-50 \mathrm{fb} \\
F_{R_{x}} & =50 \mathrm{~Pb}
\end{aligned}
$$

$$
\uparrow F_{R_{y}}=\Sigma f_{y}=10-50 \times \frac{4}{5}=-30 \mathrm{~Pb} \Rightarrow F_{R_{y}}=30 \mathrm{~Pb} b
$$

$(\stackrel{(}{)}$

$$
\Sigma 7_{\theta}=20 \times 3-10 \times 5+50 \times \frac{3}{5} \times 1-50 \times \frac{4}{5} \times 3
$$

$$
+100-170
$$

$$
\begin{aligned}
\Rightarrow \Pi_{R_{0}} & =60-50+30-120+100-170=-150 \\
& \left.\Rightarrow \Pi R_{0}=150 \mathrm{~Pb} \cdot \mathrm{Rt}\right)
\end{aligned}
$$

$$
\Sigma \Pi_{0}=\Pi_{R_{0}}=1502
$$

Problem III (30\%)

Determine the forces inside the truss members CD, CF, GF, CG, BC, BH and AH and indicate whether they are in tension or compression.

FBD for who th truss:

$\Rightarrow A_{y}=\log 0$
FBDfin Satin aa:
T
$\Rightarrow \Sigma \pi_{C}=-2000 \times 6-1000 \times 12$

$$
+5000 \times 6-T_{G F} \times 8=0
$$

$$
\Rightarrow T_{G F}=750 \mathrm{~Pb}(T)
$$

$$
\begin{aligned}
& \sum \Pi_{F}=T_{C D} \times 8-1000 \times 6=0 \Rightarrow T_{C D}=\frac{6000}{8}=750 R
\end{aligned}
$$

Section bb

(1)
© $\varepsilon \Pi_{H}=-1000 \times 6-T_{B C} \times 8=0 \Rightarrow T_{B C}=\frac{-6000}{8}=-750$

$$
\begin{aligned}
\xrightarrow[\longrightarrow]{(4)} \sum f_{x}= & T_{A H} \times \frac{6}{10}+(-750)=0 \\
& T_{A H}=\frac{750 \times 10}{6}=1250 h_{B}(T) \\
{ }^{+} \sum f_{y}= & -1000+1000-T_{B H}-1250 \times \frac{8}{10}=0 \\
& T_{B H}=-1000 \mathrm{lb}(C)
\end{aligned}
$$

Problem IV (20\%)

Determine the forces which the pins at A and B exert on the two-member frame which supports the $100-\mathrm{kg}$ crate.

FiD DD:

$$
\begin{aligned}
& 2 T-981=0 \\
& T=\frac{981}{2}=490.5
\end{aligned}
$$

$$
\begin{aligned}
& \text { (1) } \sum F_{x}=A \times \frac{0.8}{1}-B \times \frac{0.6}{\sqrt{0.52}}-490.5=0 . \\
& \text { (2) } \sum F_{y}=A \times \frac{0.6}{1}+B \times \frac{0.4}{\sqrt{0.52}}-981=0 \\
& \left\{\begin{aligned}
&(1) \times 0.4 \Rightarrow 0.32 A-B \times \frac{0.4 \times 0.6}{\sqrt{0.52}}-490.5 \times 0.4=0 \\
&(2) \times 0.6 \Rightarrow 0.36 A+B \times \frac{0.4 \times 0.6}{\sqrt{0.52}}-981 \times 0.6=0 \\
& \Rightarrow 0.68 A=0.4 \times 490.5+0.6 \times 981 \\
& \Rightarrow \Rightarrow A=1154.12 \mathrm{~N} \\
& \Rightarrow B=520 \mathrm{~N}
\end{aligned}\right.
\end{aligned}
$$

