Date: November 4, 2011, 06:00 p.m.
Duration: 90 minutes

Name	
SOLUTION	
ID \#	

	Show all calculations, and indicate the proper units
All problem solutions must include an FBD	
	Assume any missing information that is necessary
Questions have weights as indicated	
	Do not unstaple the exam booklet
	Exam booklet consists of 11 pages

Problem I (25\%)

Determine the resultant force \mathbf{R} of this system of forces in Cartesian form and compute the coordinate direction angles that \mathbf{R} forms with the x, y, and z axes.

$$
\begin{aligned}
& \xrightarrow{(4)} R_{x}=\Sigma F_{x}=F_{x}+Q_{x}+P_{x}=-\frac{1}{\sqrt{5}} \times 30 \sin 20+60 \cos 30 \cos 40+100 \cos 60 \\
& =85.21 \mathrm{lb} \\
& =-13.877 \mathrm{lb} \\
& \text { ©/ } R_{z}=E F_{z}=F_{z}+Q_{z}+P_{z}=\frac{1}{\sqrt{5}} \times 30 \cos 20-60 \cos 30 \sin 40+100 \cos 60 \\
& =29.2084 \mathrm{lb} \\
& \cos \alpha=\frac{R_{x}}{R}=\frac{85.21}{\sqrt{(85.21)^{2}+(-13.877)^{2}+(29.0084)^{2}}} \\
& \cos \beta=\frac{R y}{R} \Rightarrow \beta=98.76^{\circ} \\
& \cos \gamma=\frac{R_{子}}{R} \Rightarrow 8=71.31^{\circ}
\end{aligned}
$$

Problem II (25\%)
Determine the tension force inside each of the five cables (GD, FD, AD, $A E$, and $A B C D$) of the system shown below such that the system remains in equilibrium. W is equal to 100 N . (Show FBDs)

ABD $D \omega:$

$(+)$
$\stackrel{\omega}{\uparrow} \sum f_{y}=2 T \quad-100 \mathrm{~N}$.

$\Rightarrow T=50 \mathrm{~N}$

FBD a) A:

$F B D D D:$

$$
\begin{aligned}
& \stackrel{(4)}{\longrightarrow} \Sigma F_{x}=T_{D F}+T_{D A} \times \frac{5}{13}-T_{G D} \times \frac{4}{5}=0 \\
& T_{\Sigma F_{y}}=T_{G D} \times \frac{3}{5}-T_{D A} \times \frac{12}{13}-50=0 \\
& \Rightarrow T_{G D}=\frac{5}{3}\left(\frac{12}{13} \times 34.82+50\right)=136.9 \mathrm{~N}
\end{aligned}
$$

$$
\begin{aligned}
T_{\Delta F} & =\frac{4}{5} \times 136.9-\frac{5}{13} \times 34.82 \\
& =109.52-13.39 \\
T_{D F} & =96.13 \mathrm{~N}
\end{aligned}
$$

Problem III (20\%)

The cable AO exerts a force on the top of the pole of $\mathbf{F}=\{-\mathbf{6 0 i} \mathbf{- 4 5 j} \mathbf{- 4 0 k}\} \mathbf{N}$. If the cable has a length of 68 m , determine the height \mathbf{z} of the pole and the location (\mathbf{x}, \mathbf{y}) of its base.

$$
\begin{aligned}
& \vec{F}=-60 \vec{i}-45 \vec{j}-40 \vec{k} \\
& \vec{F}=F \cdot \vec{u}_{A O} \\
& A(a, y, z) \\
& \vec{u}_{A_{0}}=\frac{\overrightarrow{2}_{A_{0}}}{2_{A_{0}}}=\frac{-x^{x} \vec{i}-y \vec{j}-z \vec{k}}{68} \\
& F=\sqrt{60^{2}+45^{2}+40^{2}}=85 \mathrm{~N} . \\
& \vec{F}=85\left(-\frac{x}{68}\right) \vec{i}-\frac{85}{68} y \vec{j}-\frac{85}{68} z \vec{k} \\
& =-60 \vec{i}-45 \vec{j}-40 \vec{k} \\
& \frac{85}{68} x=60 \Rightarrow x=48 \mathrm{~m} \\
& \frac{85}{68} y=45 \Rightarrow y=36 m . \\
& \frac{85}{68} z=40 \Rightarrow z=32 \mathrm{~m} .
\end{aligned}
$$

Problem IV (30\%)

Structure OBCD is built in at point O and supports a 50 lb cable force at point C and 100 and 200 lb vertical forces at points B and D, respectively.

1) Determine the resultant moment of these forces around point O in Cartesian form;
2) Determine the magnitude of the component of this moment around OA axis.

$A(12.18,0)$
$C(0,0,36)$
$B(0,0,16)$
$D(15,0,36) \quad$

$$
\begin{aligned}
\vec{\Pi}_{R}= & \overrightarrow{\eta_{p}}+\overrightarrow{\eta_{F}}+\overrightarrow{\eta_{T}} \\
= & \vec{r}_{O B} \times \vec{p}+\overrightarrow{r_{O O}} \times \vec{F} \\
& +{\overrightarrow{R_{O C}}}_{0} \times \vec{T}
\end{aligned}
$$

$$
\begin{aligned}
& \vec{T}=T \cdot \vec{u}_{C A}=50\left(\frac{12 \vec{i}+18 \vec{j}-36 \vec{k}}{\sqrt{(12)^{2}+(18)^{2}+(-36)^{2}}}\right)=14.28 \vec{b}+21.43 \vec{j}-\overrightarrow{42.86} \\
& \vec{P}=-100 \vec{j} \\
& \vec{F}=-200 \vec{j} \\
& \vec{r}_{O B}=16 \vec{k}, \vec{r}_{O D}=15 \vec{i}+36 \vec{k}, \quad \vec{\Pi}_{O C}=36 \vec{k} \\
& \vec{\Pi}_{R}=\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
0 & 0 & 16 \\
0 & -100 & 0
\end{array}\right|+\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
15 & 0 & 36 \\
0 & -100 & 0
\end{array}\right|+\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
0 & 0 & 36 \\
14.168 & 21.43 & -32 k
\end{array}\right| \\
& \vec{M}_{R}=+1600 \vec{i}+7200 \vec{i}-3000 \vec{k}-771.48 \vec{i}+54.08 \vec{j} \\
& =8028.52 \vec{i}+514.08 \vec{j}-3000 \vec{k} \\
& \Pi_{R}=\sqrt{(8028.52)^{2}+(514.08)^{2}+(-3000)^{2}} \\
& =8585.62 \mathrm{fb} . \mathrm{in}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \pi_{O A}=\vec{u}_{O A} \cdot \vec{\Pi}_{R}=0.55 \times 8028.52+0.83 \times 514.08 \\
& =4842.37 \mathrm{~Pb} \text {.in. }
\end{aligned}
$$

