
 1

COE 212 – Engineering Programming

Welcome to Exam II
Tuesday July 10, 2018

Instructor: Dr. Wissam F. Fawaz

Name: _______________________

Student ID: ________________

Instructions:

1. This exam is Closed Book. Please do not forget to write your
name and ID on the first page.

2. You have exactly 85 minutes to complete the 4 required
problems.

3. Read each problem carefully. If something appears ambiguous,
please write your assumptions.

4. Do not get bogged-down on any one problem, you will have
to work fast to complete this exam.

5. Put your answers in the space provided only. No other spaces
will be graded or even looked at.

Good Luck!!

 2

Problem 1: Multiple choice questions (20 minutes) [20 points]
For the questions given below, consider the following Java class, which is stored in a Java file called
ProblemI.java:

1) How many repetition statements does the main method contain?

a. 4
b. 3
c. 2
d. None of the above

2) How many conditional statements does the main method contain?
a. 4
b. 3
c. 2
d. None of the above

3) Excluding the args parameter, how many local variables does the main method have?
a. 10
b. 11
c. 12

import java.util.*;
public class ProblemI {
 public static void main(String[] args) {
 String str1 = "www.wissamfawaz.com/index.htm";

 String str2 =
"www.wissamfawaz.com/engineer_programming/index.htm";

 String str="";
 int val1=0, val2=0, val3=0;
 char current= ‘ ’;
 Scanner scan = new Scanner(str1);
 scan.useDelimiter("/");
 StringTokenizer st=new StringTokenizer(str2,".");
 while(scan.hasNext()) {
 scan.next();
 val1++;
 }
 System.out.println(val1);
 while(st.hasMoreTokens()) {
 if(val2 == 2)
 str = st.nextToken();
 else
 st.nextToken();
 val2++;
 }
 System.out.println(val2);
 System.out.println(str.length());
 str1 = str1.substring(0, str1.indexOf("/"));
 int i;
 for(i=0; i<str1.length(); i++) {
 current = str1.charAt(i);
 if(current == 'a')
 val3++;
 }
 System.out.println(val3);
 }
}

 3

d. None of the above
4) How many iterations does the first repetition statement perform, namely, the one whose termination condition

is based on scan.hasNext()?
a. 1
b. 2
c. 3
d. None of the above

5) How many iterations does the for repetition statement, present inside the main method, perform?
a. 17
b. 18
c. 19
d. None of the above

6) What output is produced by the first println statement of the main method?
a. 2
b. 3
c. 4
d. None of the above

7) What output is produced by the second println statement of the main method?
a. 2
b. 3
c. 4
d. None of the above

8) What output is produced by the third println statement of the main method?
a. 20
b. 21
c. 22
d. None of the above

9) What output is produced by the fourth println statement of the main method?
a. 2
b. 3
c. 4
d. None of the above

10) If the following println statement is placed immediately after the body of the for repetition statement
(outside the body of the loop): System.out.println(“i: ” + i);
What output does that statement produce?

a. i: 19
b. i: 20
c. i: 21
d. None of the above

11) If the following println statement is placed immediately after the body of the for repetition statement
(outside the body of the loop): System.out.println(current);
What output does that statement produce?

a. m
b. z
c. a
d. None of the above

12) Which of the following classes used inside the main method is not an iterator?
a. Scanner
b. StringTokenizer
c. Both (a) and (b) are iterators
d. Neither (a) nor (b) is an iterator

13) Which of the following must be added at the end of the header of a main method that reads data from a file?
a. throw IOException
b. throws IOException
c. throw OIException
d. None of the above

 4

Problem 2: True or false questions (10 minutes) [20 points]

1. Assuming that x and y are boolean variables, the following code fragment:
if(x || y)

System.out.print(“Yes”);
else
 System.out.print(“No”);
can be rewritten as:
if(!x && !y)
 System.out.print(“No”);
else
 System.out.print(“Yes”);

Answer: True False

2. The following code correctly prints the String having the maximum length between the two String

variables called str1 and str2. Assume that str1 and str2 were declared and instantiated correctly.
int flag = ((str1.length()-str2.length())<0)?1:-1;
switch(flag) {
case 1 :

System.out.print(str1) ;
break;

case -1:
System.out.print(str2);

}
Answer: True False

3. In the following code fragment, the do…while repetition statement loops until the user enters a strictly

negative value (i.e., strictly less than zero) for the val variable.
Scanner scan = new Scanner(System.in);
int val;
do { val = scan.nextInt(); } while(val >= 0);

Answer: True False

4. The following code fragment correctly prints the product of all the multiples of 4 that are less than or equal to

28.
int product = 1;
for(int val = 4; val<28; val+=4) {
 product*=val;
}
System.out.print(product);

Answer: True False

5. The body of the following repetition statement executes forever:

boolean a = true, b = false, c = true;
boolean flag= a && b || !c;
do {
 System.out.println(“hi”);
} while(flag);

Answer: True False

6. Consider the following nested loops. The body of the inner loop executes a total of 88 times:

int count1=1, count2=1;
while(count1<=11) {
 while(count2<=8) {
 System.out.println(“Bravo”);
 count2++;
 }
 count1++;
}

 5

Answer: True False

7. The following code fragment prints out to the screen: un

String str = “Exam is fun”;
while(str.length()>=2) {
 str = str.substring(1);
}
System.out.print(str);

Answer: True False

8. The following code fragment correctly prints the number of non-zero even digits found in the int variable
called val. For example, if val is equal to 2467, then the code fragment prints a value of 3 since there are 3
non-zero even digits in val, namely 2, 4, and 6. Assume that val is an int variable that was declared and
initialized properly.
int counter = 0, lastDigit;
while(val != 0) {
 lastDigit = val % 10;
 if(lastDigit==2 || lastDigit==4 || lastDigit==6 || lastDigit==8)
 counter++;
 val/=10;
}
System.out.print(counter);

Answer: True False

9. The following code fragment prints true if the int variable called val is prime and prints false otherwise.

Recall that a prime number is a number that has only two divisors, namely 1 and itself.
Scanner scan = new Scanner(System.in);
int val;
do { val = scan.nextInt(); } while(val >= 9);
if(val == 2 || val == 3 || val == 5 || val == 7)
 System.out.print(true);
else
 System.out.print(false);

Answer: True False

10. The following code always prints: Tails

int x = (int) Math.random() * 2;
switch(x) {
case 0: System.out.print(“Tails”);
case 1: System.out.print(“Heads”);}

Answer: True False

 6

Problem 3: Evaluating Java Expressions (15 minutes) [20 points]
For each of the following code fragments, what is the value of x after the statements are executed?

(1) String str = “C2!O1e2*”;
String x = “”;
char c;
for(int i=0; i<str.length(); i++) {
 c = str.charAt(i);
 if(c >= ‘a’ && c <= ‘z’ || c >= ‘A’ && c <= ‘Z’)
 x += c;
}

Answer: x= Coe

(2) int x = 0, y = 2377, z=0, w=0;

do {
 w = y%10;
 if(w%2 != 0) {
 x+=w;
 z++;
 }
 y=y/10;
} while(y != 0);
if(z != 0)
 x = x/z;

Answer: x= 5

(3) String S1 = "CIE";
 String S2 = "CIS";
 int x = 0;
 do {
 if(S1.charAt(x) != S2.charAt(x))
 break;
 x++;
 } while(x < S1.length());
Answer: x= 2

(4) String x="";
 for(int i= 1;i <= 3; i++) {
 if(i%3==0)
 x+=2*i;
 else if(i%2!=0)
 x+=3/i;
 else
 x+=i;}
Answer: x= “326”

(5) String S1 = "Banana";
 String S2 = "bananaSplit";
 boolean x=(S1.compareTo(S2.substring(0, S2.indexOf(‘S’)))>0);
Answer: x= false

 7

(6) String S = "It is not over until the fat lady sings";

int y=0;
String x;
for(int i=0; i < S.indexOf(‘f’); i++)
if(S.charAt(i) == ‘h’) y = i;
x = S.substring(y);

Answer: x= “he fat lady sings”

(7) String S = "2 - 0 better than 1 - 0";

String x = "";
Scanner scan = new Scanner(S);
x+=scan.nextInt();
scan.next();
x+=scan.nextInt();
scan.next();
scan.next();
x+=scan.nextInt();

Answer: x= “201”

(8) int x = 0;

for(int i=1; i < 10; i+=3)
for(int j=1; j<i; j+=2)
x++;

Answer: x= 5

(9) final int UPPER=2;
int x = 0, y=2, z=0;
while(z<=UPPER) {
 x+=y;
 z+=2;
 y*=2;
}

Answer: x= 6

(10) DecimalFormat fmt= new DecimalFormat(“000.##”);
double y = 1.4567;
String x = fmt.format(y).substring(2);

Answer: x= “1.46”

 8

Problem 4: Coding Problems (40 minutes) [40 points]
1. Write a program called OddDigits, which reads from the user an integer n, and then prints out to

the screen the number of odd digits that are present in n as well as the average of these digits. For
example, in the sample run given below, the user entered a value of 4378 for n. This value contains
2 odd digits, namely the digits 3 and 7. Therefore, the average of the odd digits in n is found to be
(7+3)/2 = 5.0.

Sample run:
Enter n: 4378
Nb. of prime digits found in 4378 is: 2
Average of the prime digits found in 4378: 5.0

import java.util.Scanner;
public class OddDigits {
 public static void main(String[] args) {
 int n, lastDigit;
 int count=0;
 double avg=0.0;
 Scanner scan = new Scanner(System.in);
 System.out.println(“Enter n:”);
 n = scan.nextInt();
 do {
 lastDigit = n%10;
 if(lastDigit%2!=0) {
 count++;
 avg+=lastDigit;
 }
 n = n/10;
 } while(n!=0);
 if(count != 0) {
 avg = avg/count;
 System.out.println(“Nb of odd digits:”+count);
 System.out.println(“Avg of odd digits:”+avg);
 } else {
 System.out.println(“No prime digits were found”);
 }
 }
}

 9

2. Write a program called StringModification that reads a sentence from the user called str
and then creates a modified String called strModified based on str as follows.
strModified should be identical to str except that every occurrence of the white space
character and the dash character ‘-’ in str must be removed in strModified, as illustrated in
the sample output below.

Sample run:
 Enter a sentence: The exam is fun-and-long
 Modified sentence: Theexamisfunandlong

import java.util.Scanner;
public class StringModification {
 public static void main(String[] args) {
 String str, strModified= “”;
 char current;
 System.out.println(“Enter a sentence:”);
 str = scan.nextLine();
 for(int i=0; i<str.length(); i++) {
 if(current != ‘ ’ && current != ‘-’)
 strModified += current;
 }
 System.out.println(“Modified sentence:”+strModified);
 }
}

 10

3. Write a program called StringCreation that reads from the user 2 String values called S1
and S2. Your program should then form and print out a new String called S that is composed of
the first half of S2, followed by the second half of S1, then the second half of S2, which in turn is
followed by the first half of S1. Your program should force the user to enter S1 and S2 strings that
have an even number of characters.

Sample run:
 Enter S1: rice
 Enter S2: salt
 S: saceltri

import java.util.Scanner;
public class StringCreation {
 public static void main(String[] args) {
 String S1, S2;
 String S;
 Scanner scan = new Scanner(System.in);
 do {
 System.out.println(“Enter S1:”);
 S1 = scan.nextLine();
 } while(S1.length()%2!=0);
 do {
 System.out.println(“Enter S2:”);
 S2 = scan.nextLine();
 } while(S2.length()%2!=0);
 S =

S2.substring(0,S2.length()/2)
+S1.substring(S1.length()/2)
+S2.substring(S2.length()/2)
+ S1.substring(0,S1.length()/2);

 System.out.println(“S:” + S);
 }
}

 11

4. Write a Java program that extracts twitter user names from a text file. The program reads the text
tokens (which we suppose are separated by single spaces) from a source file called source.txt,
identifies the twitter user names found in the input file, numbers them, and then stores them in an
output file called users.txt, according to their order of appearance in the input file. Note that a
twitter user name is a token that begins with the “@” symbol. Note also that the “@” symbol must
be removed from the twitter user name before being stored in the output file.
For instance given the following content for source.txt:
Hello, my name is John, my twitter user name is: @John I live in
Byblos.
I use @William instead of @John to make my purchases online. My
friend David uses @David for identification.

 The resulting output file users.txt would contain:
0 - John
1 - William
2 - John
3 - David

import java.util.Scanner;
import java.io.*;
public class TwitterUserNames {
 public static void main(String[] args) throws IOException {
 Scanner inFromFile =

new Scanner(new File(“source.txt”));
 FileWriter fw = new FileWriter(“users.txt”);
 BufferedWriter bw = new BufferedWriter(fw);
 PrintWriter outToFile = new PrintWriter(bw);
 int count = 0;
 String word;
 while(inFromFile.hasNext()) {
 word = inFromFile.next();
 if(word.charAt(0) == ‘@’)
 outToFile.println(counter+“:”+word);
 counter++;
 }
 outToFile.close();
 }
}

