COE 212 – Engineering Programming

Welcome to Exam I Friday March 27, 2015

Instructors: Dr. George Sakr
Dr. Joe Tekli
Dr. Wissam F. Fawaz

Name:	 	
Student ID:		

Instructions:

- 1. This exam is **Closed Book**. Please do not forget to write your name and ID on the first page.
- 2. You have exactly 110 **minutes** to complete the 5 required problems.
- 3. Read each problem carefully. If something appears ambiguous, please write your assumptions.
- 4. Do not get bogged-down on any one problem, you will have to work fast to complete this exam.
- 5. Put your answers in the space provided only. No other spaces will be graded or even looked at.

Good Luck!!

Problem 1: Multiple choice questions (20 minutes) [14 points]

For the questions given below, consider the following helper and driver classes:

```
public class Point2D{
    private int x, y;
    public Point2D(int x, int y) {this.x=x; this.y=y;}
    public void setX(int x){this.x=x;}
    public double getX(){return x;}
    public double getY(){return y;}
    public String toString() {
        String output = "["+getX()+", "+getY()+"]";
        return output;}}
public class MultiPoints{
    public static void main(String[] args) {
        Point2D p1 = new Point2D(10, 20);
        Point2D p2 = new Point2D(30, 40);
        System.out.println(p1 + " " + p2);}}
```

- 1) What output does the driver class produce when executed?
 - a. p1 p2
 - b. Point Point
 - c. (10, 20) (30, 40)
 - d. None of the above
- 2) Which of the following can be used to compute the distance between p1 and p2? Note that the distance between two points p1(x1, y1) and p2(x2, y2) can be obtained using the following formula: $\sqrt{(x_1 x_2)^2 + (y_1 y_2)^2}$

 - $b. \quad \texttt{Math.sqrt} \; (\texttt{Math.pow} \; (\texttt{p1.x-p2.x,2}) \; + \\ \texttt{Math.pow} \; (\texttt{p1.y-p2.y,2}) \;)$

 - d. None of the above
- 3) Which of the following statements is true about the Point2D class?
 - a. Point2D contains 2 mutator methods
 - b. Point2D contains 2 accessor methods
 - c. Point2D violates the encapsulation principle
 - d. None of the above is true about Point2D
- 4) How many local variables are used inside the Point2D class?
 - a. 5
 - b. 6
 - c. 7
 - d. None of the above
- 5) How many formal parameters are used inside the MultiPoints class?
 - a. 2
 - b. 3
 - c. 4
 - d. None of the above
- 6) How many actual parameters are used inside the Point2D class?
 - a. 0
 - b. 1
 - c. 4
 - d. None of the above

```
7) What output does the following method call produce: p1.toString().length()?
      a. 6
      b. 7
      c. 8
      d. None of the above
8) What output does the following code fragment produce?
   String str = p2.toString();
   System.out.println(str.substring(str.indexOf('0')+1));
      a. ]
      b. , 20]
      c. The code fragment results in a syntax error
      d. None of the above
9) Which of the following statements produces a compile-time error?
      a. int x1 = p1.getX();
      b. long x1 = p1.getX();
      c. Both of the above
      d. None of the above
10) What output does the following code fragment produce? Assume that the
   DecimalFormat class was imported properly.
   DecimalFormat fmt = new DecimalFormat("0.##");
   p1.setX(10.346);
   double roundedX1 = fmt.format(p1.getX());
   System.out.println(roundedX1);
      a. 10.35
      b. 10.34
      c. The code fragment results in a run-time error
      d. None of the above
11) What output does the following code fragment produce?
   p1 = p2;
   System.out.println(p1.toString().charAt(1));
      a. 1
      b. 2
      c. 3
      d. None of the above
12) Consider the following statement: String pt = p1.toString(); Which of the
   following returns the index of the second '0' in pt?
      a. pt.substring(pt.indexOf('0')).indexOf('0');
      b. pt.substring(pt.indexOf('0')+1).indexOf('0');
      c. pt.substring(pt.indexOf('0')+1,pt.length()).indexOf('0');
      d. Both (b) and (c)
13) The compilation of which of the below statements would result in an error?
      a. System.out.println(p1.getX());
      b. System.out.println(p1.setX(4));
      c. System.out.println(p1.getX().toString());
      d. Both (b) and (c)
14) Which of the following can be used to convert the x coordinate of p1 into a String?
      a. Integer.toString(p1.getX())
      b. p1.getX() + ""
      c. All of the above
      d. None of the above
```

Problem 2: True or false questions (**10 minutes**) [12 points]

- 1. The following method call returns the cosine of a 90 degrees angle: Math.cos (90) Answer: True **False**
- 2. (int) Math.random()*2+1 can be used to generate a random int value between 1 (inclusive) and 2 (inclusive).

Answer: True False

3. Consider a String variable called str. If str is declared and instantiated properly, then the method call: str.toUpperCase() will modify the value of str converting all of its characters into upper-case.

Answer: True False

- 4. Given that a forward slash (/) is used to mark the beginning of an escape sequence, it is not possible to print the forward slash character (/) using a System.out.print statement. Answer: True False
- 5. Consider 2 String objects called str1 and str2 respectively. The statements given below, and that we labeled as **Statement1** and **Statement2**, are functionally equivalent.

Statement1: String str = str1 + " " + str2;
Statement2: String str = str1.concat(str2);

Answer: True False

6. The following code fragment creates two variables that are aliases of each other.

int val1 = 1, val2 = 2; val1 = val2;

Answer: True False

7. All the methods of the Math class are static and return a double output value.

Answer: True False

8. When a method is called, each formal parameter is copied and stored in the corresponding actual parameter.

Answer: True False

- 9. The header of a method defines the code that will be executed when that method is called. Answer: True **False**
- 10. If the calling method and the called method belong to two different classes, then the called method should be invoked through an object created from the class that contains it.

Answer: True False

11. If letter is a char variable, then letter.toUpperCase() returns a lower case version of the character stored in letter.

Answer: True False

12. Java is a strongly typed language.

Answer: True False

Problem 3: Code analysis (**15 minutes**) [10 points]

1) Consider the two helper classes given below, along with a driver class.

```
public class ClassA {
                                              public class ClassB {
      private int x;
                                                    private ClassA obj1, obj2;
      public ClassA() { x = 4; }
                                                    public ClassB() {
      public void scaleValue(int x) {
                                                           obj1 = new ClassA() ;
            int temp = x;
                                                           obj2 = new ClassA() ;
            this.x*=temp;}
      public int getX() {return x;}
                                                    public void scaleValues(int x) {
                                                           obj1.scaleValue(x) ;
public class ClassBDriver {
                                                           obj2.scaleValue(x) ;
public static void main(String[] args) {
        ClassB b=new ClassB();
                                                    public int getObj1X() {
        int x = 2;
                                                           return obj1.getX() ;
        b.scaleValues(2);
        System.out.println(
                                                    public int getObj2X() {
        "Answer is: "+
                                                           return obj2.getX();
         b.getObj1X()+b.getObj2X());}}
```

When running the ClassBDriver class, what output is produced?

- a. Answer is: 4b. Answer is: 8
- c. Answer is: 22
- d. It doesn't compile correctly
- e. None of the above
- 2) Consider the class given below, along with a driver class for it.

```
public class ClassC {
                                           public class ClassCDriver {
      private int x, y;
                                           public static void main(String[] args){
      public ClassC() {
            x = 5; y = 1;
                                                   ClassC c=new ClassC();
      public int first(int x) {
                                                   c.doIt();
            y=x+1;
            return y+1;}
      public void second(int x, int y) {
            y = first(x);
            this.y=y+1;}
      public void doIt() {
            int val = first(y) ;
            second(y, val);
            System.out.print(x+y);}
```

When running ClassCDriver class, what output is produced?

- a. 4
- b. 6
- c. 7
- d. It doesn't compile correctly
- e. None of the above

Problem 4: Evaluating Java Expressions (15 minutes) [14 points]

For each of the following code fragments, what is the value of \mathbf{x} after the statements are executed?

```
(1) DecimalFormat fmt = new DecimalFormat("00.###"); (2 pts)
  double a = 1.2345;
  double b = 100;
  b = a/b;
  String x = fmt.format(b);
  x += b;
  Answer: x= "00.0120.012345"
(2) int u = 10;
  double v = Math.ceil(u*10.28);
   int x = ((int)Math.floor(v) - u/10);
   Answer: x= 102
(3) String x = "A mind is like a parachute: it doesn't work if
  it's not open";
  x = x.replace('k', 'm').substring(0).replace(x.charAt(12),
  x.charAt(2));
  Answer: x="A mind is lime a parachute: it doesn't worm if
   it's not open"
(4) Random rnd = new Random(); (2 pts)
   double y = rnd.nextInt(20)/3;
   int x = (int) (rnd.nextFloat() / y) % 5;
  Answer: x = 0
(5) DecimalFormat fmt = new DecimalFormat("000.#");
   String x = fmt.format(1.23).substring(0, 3);
  x += x.charAt(x.length()-1);
  Answer: x= "0011"
(6) int a=13, b=29;
  String str = "Good Morning Ladies and Gents";
  String x = "\"+str.substring(a,b)+"\"";
```

Answer: x= "Ladies and Gents"

```
(7) String str = "Encyclopedia Galactica"; (2 pts)
  char x = str.charAt(str.length() -
  str.substring(10).length());
```

Answer: x= 'i'

(8) double val1 = 123.456; double val2 = Math.floor(val1*10); double x = val2 - (int)val1*10;

Answer: x = 4.0

(9) int y = 10, z = 10; String x = y + 1 + z + 1 + "" + z + y;

Answer: x= "221010"

```
(10) int a = 8, b =8, c = 9; (2 pts)
a = b++;
b = ++c;
int x = a + b + c;
```

Answer: x= 28

Problem 5: Coding (**50 minutes**) [50 points]

1. Write a Java program called LastNameFirst that reads from the user a String that contains his first name followed by his last name with a white space character in between. Your program should then create and then print out a String consisting of the last name followed by the first name separated by a white space character as illustrated in the sample output given below.

Sample run:

Enter a String: Georges Sakr Output String: Sakr Georges

```
import java.util.Scanner;

class LastNameFirst{

public static void main (String [] args){

    Scanner scan = new Scanner(System.in);

    System.out.print("Enter a String: ");
    String S = scan.nextLine();

    String S2 = S.substring(S.indexOf(' ')+1) + " " + S.substring(0, S.indexOf(' '));

    System.out.println("Output String: " + S2);
    }
}
```

2. Write a Java program called InsertString that reads from the user 2 String values denoted by str1 and str2 and an integer value denoted by k. Your program should then create a String str3 that results from the insertion of str2 at the k^{th} position in str1.

Sample run:

Please enter str1: is fun Please enter str2: Exam

Please enter k: 0

Resulting String str3: Examis fun

```
import java.util.Scanner;

class InsertingString{

public static void main (String [] args){

    Scanner scan = new Scanner(System.in);

    System.out.print("Please enter str1: ");
    String str1 = scan.nextLine();

    System.out.print("Please enter str2: ");
    String str2 = scan.nextLine();

    System.out.print("Please enter k: ");
    int k = scan.nextInt();

    String str3 = str1.substring(0, k) + str2 + str1.substring(k);

    System.out.println("Output String: " + str3);
    }
}
```

3. We know that the largest power of 2 that is less than some integer N is equal to 2^M where M is given by:

$$M = floor\left(\frac{\ln N}{\ln 2}\right)$$

For example, the largest power of 2 that is less than 600 is 512, since

$$M = floor\left(\frac{\ln 600}{\ln 2}\right) = 9 \ and \ 2^9 = 512$$

Write a Java program that reads from the user an integer value denoted by N, Your program should then do the following:

- Find and print the largest power of 2 that is less than the input value N
- Generate a random power of 2 that is less than N

Sample run:

Please enter an integer: 600

The largest power of 2 less than 600 is: 512 A random power of 2 less than 600 is: 16

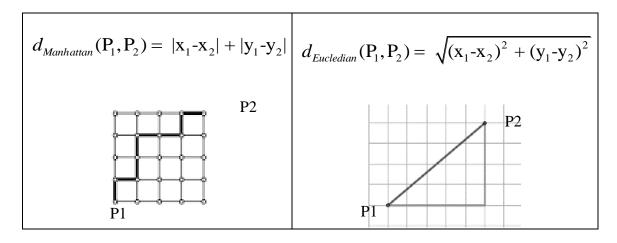
```
import java.util.Scanner;
import java.util.Random;
class LargestPowerOf2{
public static void main (String [] args){
        Scanner scan = new Scanner(System.in);
        System.out.print("Please enter an integer: ");
        int N = scan.nextInt();
        double M = Math.floor(Math.log(N)/Math.log(2));
        int lp2 = (int)Math.pow(2, M);
                                        // Largest power of 2 less than N
        System.out.println("The largest power of 2 less than " + N + " is: " + lp2);
        Random rnd = new Random();
        int m = rnd.nextInt((int)M + 1);
        int rand p2 = (int)Math.pow(2, m); // Random power of 2 less than N
        System.out.print("A random power of 2 less than " + N + " is: " + rand p2);
   }
```

- 4. Write a program that simulates the job of a cashier by:
 - Reading a price *p* (in dollars, expressed as an integer value) corresponding to the purchases of a customer.
 - Reading from the costumer the amount of money *m* that he/she will pay (in Lebanese Pounds LBP, also expressed as an integer value). We consider that the amount of money paid is always greater that the price.
 - And then computing the amount of money that the cashier program should return to the customer by displaying: the number Nb_100 of bills of "100 thousand LBP, the number Nb_50 of bills of 50 thousand LBP, the number Nb_10 of bills of 10 thousand LBP, the number Nb_5 of bills of 5 thousand LBP, the number Nb_1 of bills of 1 thousand LBP, and the number Nb of bills of 500 LBP to be returned to the customer.

We consider that \$1 = 1500 LBP

Sample run:

Enter price in Dollars: 230


Enter the amount of money that the customer pays, in Lebanese Pounds: 500000

The cashier returns:

```
1 bill(s) of 100,000 L.P.
1 bill(s) of 50,000 L.P.
0 bill(s) of 10,000 L.P.
1 bill(s) of 5,000 L.P.
0 bill(s) of 1,000 L.P.
0 bill(s) of 500 L.P.
```

```
p = scan.nextInt();
     System.out.print("Enter the amount of money that the customer pays," +
                        "in Lebanese Pounds: ");
     m = scan.nextInt();
     m = (m - p*1500);
                               // Computing the remainder,
                               // that the cashier should return to the customer
     Nb 100 = m/100000;
                                   // Computing the number of 100 thousand L.P. bills
             m = m%100000;
     Nb_50 = m/50000;
                                   // Computing the number of 50 thousand L.P. bills
             m = m\%50000;
                                   // Computing the number of 10 thousand L.P. bills
     Nb_10 = m/10000;
             m = m\% 10000;
     Nb 5 = m/5000;
                                  // Computing the number of 5 thousand L.P. bills
             m = m \% 5000;
     Nb_1 = m/1000;
                                  // Computing the number of 1 thousand L.P. bills
             m = m \% 1000;
     Nb = m/500;
                                  // The number of 500 L.P. bills
     System.out.println("The cashier returns: ");
     System.out.println(Nb_100 + " bills of 100 000 L.P.");
     System.out.println(Nb_50 + " bills of 50 000 L.P.");
     System.out.println(Nb_10 + " bills of 10 000 L.P.");
     System.out.println(Nb_5 + " bills of 5 000 L.P.");
     System.out.println(Nb 1 + " bills of 1 000 L.P.");
     System.out.println(Nb + "bills of 500 L.P.");
}
```

5. Taxicab geometry is a form of geometry in which the distance between two points in a 2-D space is evaluated as the sum of the absolute differences of their Cartesian coordinates. It was inspired by the block layout of Manhattan in New York City and the distances taxicabs need to traverse in order to go from one point to another in the city. The distance function following taxicab geometry is called the Manhattan distance, in contrast to the conventional distance function based on Euclidian geometry. Note that both functions (namely, Manhattan and Euclidean distance functions) are given in the figure below.

Write a program which reads from the user the (x, y) coordinates of two points P1 and P2 in 2-D space, and then computes both Manhattan and Euclidian distance functions following the formulas above.

Sample run:

Enter x coordinate of point P1: 0 Enter y coordinate of point P1: 0 Enter x coordinate of point P2: 1 Enter y coordinate of point P2: 1 Manhattan distance (P1, P2) = 2.000 Euclidian distance (P1, P2) = 1.414

```
import java.util.Scanner;
import java.text.DecimalFormat;

public class TaxiCab
{
    public static void main (String[] args)
        {
        double x1, y1, x2, y2, Man, Euc;
        Scanner scan = new Scanner(System.in);
        System.out.print("Enter x coordinate of Point P1: ");
```

```
x1 = scan.nextDouble();

System.out.print("Enter y cooridnate of Point P1: ");
y1 = scan.nextDouble();

System.out.print("Enter x coordinate of Point P2: ");
x2 = scan.nextDouble();

System.out.print("Enter y cooridnate of Point P2: ");
y2 = scan.nextDouble();

Man = Math.abs(x1 - x2) + Math.abs(y1 - y2);
Euc = Math.sqrt(Math.pow(x1 - x2, 2) + Math.pow(y1 - y2, 2));

DecimalFormat fmt = new DecimalFormat("0.000");

System.out.println("Manhattan distance(P1, P2) = " + fmt.format(Man));
System.out.println("Euclidian distance(P1, P2) = " + fmt.format(Euc));

}
}
```