Byblo

Test # 1 85 minutes

- Find the steady-state and the transient current in an RL-circuit where R = 30 ohms, L = 10 henrys, E = 10 e^{-t} Volts, I(0) = 0.
- 2. Solve the following 1st order DE:

)
$$(\cos x) y' - (\sin x) y = 1$$
 (10 pts)

b)
$$xy' = y + x\cos(y/x)$$
 (10 pts)

3. Solve the following 2nd order DE:

$$y'' + 2y' + 5y = 0$$
 (10 pts)

$$yy'' + y'^2 = 0$$
 (10 pts)

Find an integrating factor then solve the DE:

$$y^2 dx + (e^x - 2y) dy = 0.$$
 (12 pts)

- Çi The mass of a radioactive substance decreased from 4 grams to 1 gram in 10 days. Without computations,
- a) Find its half life.
- b) After how many days the mass becomes 0.25 grams. (10 pts)
- ģ Consider the Ricatti equation: $x^2y' + xy = y^2$
- a Show that the equation can be reduced to a Bernoulli equation by applying the substitution z = y - 2x
- ভ Find the general solution. (15 pts)
- Sketch the solution passing through the O(0,0). values of m: 0, 1, $\frac{3}{4}$, $\frac{-5}{4}$ and -3. (1 unit = 1 square). field. Include the isoclines corresponding to the following Consider the 1st order DE: $4y' = 4 - x^2 - y^2$. Draw the direction (13 pts)

Byblos

90 minutes Test #1

- C = 0.5 farad, $E = 12e^{-t}$ volts, and I(0) = 0. Find the charge and the current in an RC-circuit, where R = 4 ohms (10 pts)
- 2 will it take the water to reach 20°C. temperature 30 °C. Its temperature doubled in 3 hours. How long A cup of water of temperature 5°C is placed in a room of constant (10 pts)
- Ļ Solve the following differential equations:
- a 0 $(2xy^2 + y) dx + (x^2y - 1) dy = 0$ (10 pts)
- $y = xy' + y'^{-1}$. Clairaut equation. Hint: Differentiate then solve. (8 pts)

(8 pts)

0

 $xy' = y + x \sec(y/x)$

CL

- $y' + \frac{1}{x}y = y^2 \frac{1}{x^2}$. Riccati. Hint: Verify that $y = \frac{1}{x}$ is a solution then apply a change of variables (10 pts))
- 4

without initial velocity. Find in terms of k the motion of the mass Find the spring constant R constant k. We push the mass 0.2 meter upward and release it A mass of 1 Kg is attached to the lower end of a spring with spring Assume that the mass returns to its initial position after 3 seconds (10 pts)

5 Solve the following 2nd order differential equations:

a)
$$y'' + 3y' + 4y = 0$$
 (6 pts)

b)
$$y'' + 6y' + 9y = 0$$
 (6 pts)

c)
$$xy'' - 2y' + (x + \frac{2}{x})y = 0$$
.
Verify that $y_1 = x \cos x$ is a solution then solve. (10 pts))

- 6. Consider the 2^{nd} order DE: $4y' + 4y = x^2$
- a Find the region where the slope y' is positive.
- b) Show that the isoclines are parabolas.
- 0 to the following values of m: -2, -1, 0, 1 and 2. Draw the direction field. Include the isoclines corresponding
- 9 and B(-2, 1) respectively. Sketch 2 solutions passing through the points A(0,2)

(12 pts)

	Turn Over	
9,7	Let $z = -3 + 4 i$. Find e^z , $log[z]$, $log[z]$ and the principal values of $(-2)^z$	7.
	Solve for z the equation tan z = 2 i	6
	Solve the equation $(x - y) dx + x dy = 0$.	Ċ
	Solve the following LDE: a) xy'+y=cosx b) y"+(tan x)y' ≥ 0	4.
	Consider the 2^{nd} order HLDE: $x^2y'' + 3xy' + y = 0$ a) Verify that $y_1 = \frac{1}{x}$ is a particular solution. b) Find the general solution.	့ယ
wat	A small metal bar is dropped into a container of boiling water. Its temperature increased from 20°C to 28°C in 4 seconds. Find its temperature T(t).	'n
ä	The mass of a radioactive substance at the time t = 1 year is 5 grs. Its mass at the time t = 2 years is 4 grs. a) Find the initial mass. b) Find its half life.	
Test # 1 80 minutes	Byblos	
Diff.Equations	Lebanese American University	Le

8. Consider the 1st order DE: $2y' = y + \frac{x^2}{4}$.

Draw lineal elements on the isoclines y' = m corresponding to the following values of m: -1, -0.5, 0, 0.5 and 1. (q

(12 pts) Sketch 2 solutions passing through the points A(2,-2) and B(0, 0) respectively. ઇ

