Lebanese American University

Byblos

Discrete Structure I HW #2	
$\mathbf{HW}\ \#2$	

Due date: None

1. We consider the following truth table for a formula $\varphi {:}$

p	q	r	s	φ
Т	Т	Т	Т	Т
T	Т	Т	F	F
T	Т	F	T	Т
T	Т	F	F	F
T	F	T	T	F
T	F	Т	F	Т
T	F	F	Т	F
T	F	F	F	Т
F	T	T	Т	Т
F	Т	T	F	F
F	Т	F	T	Т
F	T	F	F	F
F	F	Т	Т	F
F	F	Т	F	T
F	F	F	Т	F
F	F	F	F	Т

- (a) Using Karnaugh maps, find a DNF and a CNF for φ .
- (b) Now we define the connective nor by: $p \text{ nor } q = \neg(p \lor q)$. Prove that the set $\{nor\}$ is adequate.
- (c) Deduce a representation for φ by only the *nor* connective.