Discrete Structures I Fall 2013 January 2013 Exam III

Name: ____Blution

1. (8%) Use the Euclidean algorithm to find the gcd(27,72). Also write the gcd as a linear combination of the 2 numbers, showing details of your work.

$$72 - 27(3) + 18$$
 $27 - 18(1) + 9$
 $18 - 9(a) = 0$
 $9 - 27(3) - 72$

2. (10%) Given three integers a, b, and m, and if (m, a) = 1, show that if m | ab, then m | b?

of they must include prime divisous of m

3. (10%)Prove that if a divides b, then a^2 divides b^2 .

- 4. (10%)Construct a graph G on the set of vertices $\{x,y,z,w\}$ whose matrix is
- (a) Find all paths from x to y. Mention their length

(b) Find all paths of length 2 using matrices.

- 5. (7%)Given the following partition on the set $N: \{n \in N: n = 7k + p\}$, where p = 0, 1, 2, 3, 4, 5, 6.
- (a) Find an equivalence relation \sim on the set N that partitions N into the sets mentioned in the partitions above

- 6. (10%) Consider the relation R on $A=\{1,2,3,4,5,6\}$, aRb if and only if $a+b \le 8$. State all properties of R.
- (2) (2) (3) (4) (4) (7) A W W 2 2 2 S X E 25R 3 ひする
- 3R5, 5\$5
- 7. (8%) Find, if possible, using a digraph, a relation on the set $A = \{a, b, c, d, e\}$ that is (AR),(S) and (T). Comment on your construction.

- 8. (10%) Let $A = \mathbb{Z}$, and R be the relation on A given by aRb if and only if $a^2 \equiv b^2 \pmod{5}$.
- (a) Show (in a very efficient way) that the relation R is an equivalence relation.

At (b) Find all equivalence classes determined by
$$R$$
.

 $m \mod 5$
 $m \mod 5$

- 9. (10%) Answer the following. In case the answer is yes, prove your statement, and in case it is no, find a real counterexample.
- (a) If R and S are two transitive relations, is $R \cup S$ also transitive?

RUS must

&

a (RUS) b

6 RUS

ey 3 4 20

10. (7%) Draw the digraph of an equivalence relation on $A = \{1, 2, 3, 4, 5, 6, 7\}$ whose equivalence classes are $\{1, 3\}, \{2, 4, 5, \}, \{7\}, \{6\}.$

11. (10%) Let $A = \{a, b, c, d\}$ and consider the matrix M =

(2 pm/h) (a) Find all the paths of length 2 from vertex a to each of the other vertices:

R(1,c,d)=}0,c, R(S) I 20,03

(b) Find R(a) and $R(\{b,c,d\})$

			•
·			