1. Find the gcd d of 20 and 75 , then write d as a linear combination of 20 and 75 .
2. Consider the equivalence relation on $Z \times Z$ given by $(m, n) R(p, q)$ if and only if $m q=n p$.
(a) Find the equivalence class represented by $(2,5)$.
(b) Describe the set S of the equivalence classes determined by R.
3. Consider the matrix $M_{R}=\left[\begin{array}{lll}1 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1\end{array}\right]$.
(a) Write the relation on the set $\{a, b, c\}$ corresponding to M_{R}.
(b) Draw the directed graph corresponding to M
(c) Calculate M^{2}, M^{3}
(d) Find a formula for M^{n}, and prove it by induction.
(e) Using the previous part, or otherwise, find the number of paths of length n from a to c.
4. Define the relation R on $\mathbb{N} \times \mathbb{N}$ by: $(x, y) R(z, w)$ if and only if $x-z=w-y$. Check whether R is an equivalence relation. Explain your answer
5. Define the relation R on \mathbb{N} by, $m R n$ if $3 \mid m-n$
(a) Is R an equivalence relation? If so, what are its equivalence classes?
6. Let \sim be the equivalence relation on \mathbb{Z} given by $m \sim n$ if and only if $m^{3}=n^{3}$
(a) Show that R is a reflexive, symmetric and transitive
7. Show that if a prime number $p \mid a^{n}$, then $p \mid a$.
8. Let $a=272$ and $b=176$. Find $d=g c d(a, b)$. then write d as a linear combination of a and b.
9. Find the gcd d of 20 and 75 , then write d as a linear combination of 20 and 75 .
