- 1. Find the gcd d of 20 and 75, then write d as a linear combination of 20 and 75.
- 2. Consider the equivalence relation on $Z \times Z$ given by (m, n)R(p, q) if and only if mq = np.
 - (a) Find the equivalence class represented by (2, 5).
 - (b) Describe the set S of the equivalence classes determined by R.

3. Consider the matrix $M_R = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}$.

- (a) Write the relation on the set $\{a, b, c\}$ corresponding to M_R .
- (b) Draw the directed graph corresponding to M
- (c) Calculate M^2, M^3
- (d) Find a formula for M^n , and prove it by induction.
- (e) Using the previous part, or otherwise, find the number of paths of length n from a to c.
- 4. Define the relation R on $\mathbb{N} \times \mathbb{N}$ by: (x, y) R(z, w) if and only if x z = w y. Check whether R is an equivalence relation. Explain your answer
- 5. Define the relation R on \mathbb{N} by, mRn if $3 \mid m n$

(a) Is R an equivalence relation? If so, what are its equivalence classes?

6. Let ~ be the equivalence relation on \mathbb{Z} given by $m \sim n$ if and only if $m^3 = n^3$

(a) Show that R is a reflexive, symmetric and transitive

- 7. Show that if a prime number $p \mid a^n$, then $p \mid a$.
- 8. Let a = 272 and b = 176. Find d = gcd(a, b). then write d as a linear combination of a and b.
- 9. Find the gcd d of 20 and 75, then write d as a linear combination of 20 and 75.