LEBANESE AMERICAN UNIVERSITY DEPARTMENT OF COMPUTER SCIENCE AND MATHEMATICS

EXAM 1 - MTH 207 DISCRETE STRUCTURES 1 – FALL 2010

DURATION: 75 MIN

NAME:

<u>ID:</u>

<u>INSTRUCTIONS</u>: This exam consists of 7 pages and 9 problems. Check that none is missing. Answer the questions in the space provided for each problem; if more space is needed, you may use the back pages.

GOOD LUCK!

QUESTION	GRADE
1. 20%	
2. 8%	
3.10%	
4.6%	
5.8%	
6.16%	
7.10%	
8.6%	
9.16%	
TOTAL	

a. (6%) Evaluate the following sum
$$\sum_{j=0}^{8} (2 \cdot (-3)^j - j^2)$$

1.

b. (5%) Find the general term b_n of the sequence $\left\{1, -1, \frac{1}{2}, -\frac{1}{6}, \frac{1}{24}, -\frac{1}{120}, \ldots\right\}$

c. (6%) Show that the sequence $\{5n-2\}_{n=1}$ is an algebraic progression. Identify its initial term and its common difference.

d. (3%) Find the first six terms of the sequence $\{a_n\}_{n=1}$ where $a_n = \left\lfloor \sqrt{2n} + \frac{1}{2} \right\rfloor$

2. (8%) Recall that if A and B are two sets, then $|A \cup B| = |A| + |B| - |A \cap B|$. Use this formula to show that if C is a third set, then $|A \cup B \cup C| = |A| + |B| - |A \cap B| - |A \cap C| - |B \cap C| + |A \cap B \cap C|$

3. (10%) Prove the following De Morgan's Law $\overline{A \cap B} = \overline{A} \cup \overline{B}$ by showing that $\overline{A \cap B} \subseteq \overline{A} \cup \overline{B}$ and $\overline{A} \cup \overline{B} \subseteq \overline{A \cap B}$

4. (6%) Using the law in the previous exercise, prove the following generalized De Morgan's Law one: $\overline{A \cap B \cap C} = \overline{A} \cup \overline{B} \cup \overline{C}$ (This is a one line proof)

5. (8%) Use the membership table to show the same generalized De Morgan's Law as in the previous exercise ($\overline{A \cap B \cap C} = \overline{A} \cup \overline{B} \cup \overline{C}$).

- **6.** Let $f: S \to T$ denote a function.
 - **a.** (6%) Which ones of the following statements mean that the function is 1-1:
 - i. If $f(s_1) = f(s_2)$, then $s_1 = s_2$
 - ii. If $s_1 = s_2$ then $f(s_1) = f(s_2)$
 - iii. If $s_1 \neq s_2$ then $f(s_1) \neq f(s_2)$

b. (10%) Let $f : P \times P \to P$ be given by $f(m, n) = 3^m 7^n$. Show that this function is 1-1 but not onto (*P* is the set of positive integers)

7. (10%) Let $f: S \to T$ and $g: T \to U$ denote two 1-1 functions. Show that $g \circ f: S \to U$ is 1-1.

8. (6%) Define the <u>cardinality</u> of a set S in case the set is finite and in case it is infinite.

9.

a. (10%) Find a 1-1 correspondence between the set of positive integers $\Box * = \{1, 2, 3, 4...\}$ and the set T of all multiples of $3(T = \{3, 6, 9, 12, ...\})$

b. (2%) Is the set *T* countable or uncountable? Justify.

c. (4%) Can two infinite sets have the same cardinality even though they may seem to have different sizes? Justify