Byblos

Discrete Structure I	Date: 25/01/2012 Final Exam
Duration: 2h 15	
Name:	ID:

Part I: Problems (70 pts)

1. [10 pts] Find a resolution proof and a formal proof for the following propositional logic formula:

$$
\{C \longrightarrow(A \vee D) ; \neg D \longrightarrow(B \vee \neg C) ; C ; \neg D\} \vdash \neg(A \longrightarrow \neg B)
$$

(Hint: For the formal proof, assume $A \longrightarrow \neg B$ and prove a contradiction)
2. [15 pts] Prove, by induction, the following:
(a) $8^{n}-3^{n}$ is divisible by 5 for all $n \in \mathbb{N}$.
(b) $\sum_{k=1}^{n} \frac{k}{(k+1)!}=1-\frac{1}{(n+1)!}$.
(c) $5^{2 n+1} \cdot 2^{n+2}+3^{n+2} \cdot 2^{2 n+1}$ is divisible by 19 for all $n \in \mathbb{N}$.
3. [10 pts] Solve using pigeonhole principle the following two independent questions:
(a) There are 25 students in a class. While doing a keyboarding test, each student made fewer than 12 mistakes. Show that at least 3 students made the same number of mistakes.
(b) Five points are chosen from inside an equilateral triangle of side 2. Prove that two points must be within a distance of 1 of each other.
4. [10 pts] We consider the following program (input is n and output is r):

```
if n>0 then
    begin r:=0;
            i:= 1;
            while i<=n do
                    begin r:=r+2*i;
                        i:= i + 1;
            end;
        end;
```

(a) Find the output of the program for $n=1, n=2, n=3$ and $n=4$.
(b) Which function computes the program?
5. [13 pts] Verify, in the following cases, if the binary relation R defined over the set X is reflexive, symmetric and transitive. If R is an equivalence relation then find the set of classes π_{R}.
(a) $X=\mathbb{Z}$ and $x R y$ iff $x+y$ is even.
(b) $X=\mathbb{Z}$ and $x R y$ iff $x y$ is even
6. [12 pts] Find for the following two ordered sets the maximal, minimal, greatest and least elements (if any):
(a) $X=\{2,6,12,18,24,36\}$ and the order is $x R y$ iff x divides y.
(b) $X=\{[0,1],[-1,2],[-1,3],[2,3],[-1,5]\}$ and the order is $x R y$ iff $x \subseteq y$.
(c) $X=\{2,3,4,8,9,16\}$ and the order is $x R y$ iff $\exists n \in \mathbb{N}^{*}$ such that $y=x^{n}$.

