LEBANESE AMERICAN UNIVERSITY Division of Computer Science and Mathematics

Discrete Structures I

Exam I

Fall 2012 (October 31)

Name: Solutions II

Question Number	<u>Grade</u>
1. 10%	
2. 10%	
3.8%	
4. 7%	
5. 12%	
6. 12%	
7. 13%	
8. 13%	
9. 15%	
Total	

1. (10%) Given that the sets A, B and C are all countable, show that their union is also countable.

Let $D = A \cup B \cup C$. $A = \{a_1, a_2, \dots\}$ $B = \{b_1, b_2, \dots\}$ $C = \{a_1, c_2, \dots\}$ Let $D = \{d_1, d_2, \dots\}$ so that $a_1 = d_1$ $a_2 = d_4$ $a_3 = d_7$ $a_1 = d_1$ $a_2 = d_4$ $a_3 = d_7$ $a_1 = d_1$ $a_2 = d_6$ $a_3 = d_7$ $a_1 = d_1$ $a_2 = d_6$ $a_3 = d_7$ $a_1 = d_1$ $a_2 = d_6$ $a_3 = d_7$ $a_1 = d_1$ $a_2 = d_6$ $a_3 = d_7$ $a_1 = d_1$ $a_2 = d_6$ $a_3 = d_7$ $a_1 = d_1$ $a_2 = d_6$ $a_3 = d_7$ $a_1 = d_1$ $a_2 = d_6$ $a_3 = d_7$ $a_1 = d_1$ $a_2 = d_6$ $a_3 = d_7$ $a_1 = d_1$ $a_2 = d_2$ $a_3 = d_7$ $a_1 = d_1$ $a_2 = d_2$ $a_3 = d_7$ $a_1 = d_1$ $a_2 = d_2$ $a_3 = d_7$ $a_1 = d_1$ $a_2 = d_2$ $a_3 = d_7$ $a_1 = d_1$ $a_2 = d_2$ $a_3 = d_7$ $a_1 = d_1$ $a_2 = d_2$ $a_3 = d_3$ $a_1 = d_1$ $a_2 = d_2$ $a_3 = d_3$ $a_1 = d_1$ $a_2 = d_2$ $a_3 = d_3$ $a_1 = d_1$ $a_2 = d_2$ $a_3 = d_3$ $a_4 = d_1$ $a_1 = d_1$ $a_2 = d_2$ $a_3 = d_3$ $a_4 = d_3$ $a_1 = d_2$ $a_1 = d_3$ $a_2 = d_3$ $a_1 = d_3$ $a_2 = d_4$ $a_1 = d_4$ $a_2 = d_4$ $a_1 = d_4$ $a_1 = d_4$ $a_2 = d_4$ $a_1 = d_4$ $a_1 = d_4$ $a_2 = d_4$ $a_1 = d_4$ $a_1 = d_4$ $a_2 = d_4$ $a_3 = d_4$ $a_4 = d_4$ $a_4 = d_4$ $a_4 = d_4$ $a_4 = d_4$ $a_5 = d_5$ $a_5 = d_5$ $a_5 = d_6$ $a_5 = d_6$ $a_5 = d_6$ $a_5 = d_6$

2. (10%) If you know that x is rational and y is irrational, show whether or not $2x + \frac{3}{2}y$ is rational Specify the proof type you use.

Space not [pmy by contradiction] \Rightarrow .

Space not [pmy by contradiction] \Rightarrow .

Space $2=\frac{m}{n}$ $y = \frac{2}{3}[2-2x] = \frac{2}{3}[\frac{m}{m}-2x]$ but since x is rational \Rightarrow $x = \frac{a}{b}$, for some $a, b \in \mathbb{Z}$ \Rightarrow $y = \frac{2}{3}[\frac{m}{n} - \frac{2a}{b}]$ also rational a contradiction, since y is irrational

7. (13%) Consider the statement: "The difference between a real number and itself is zero". Express this statement symbolically using predicates, quantifiers, logical connectives etc....

8. (13%) Given the proposition $\forall x \exists y (F(x) \land P(x)) \rightarrow M(x,y)$

Make up your own English statement that agrees with the above. Make sure you specify the domains of x and y.

9. (15%) Show using induction that $8|5^{n+1}+2*(3^n)+1$ for all n=1,2,3,...

$$5^{(k+1)} + 2 \cdot 3^{2} + 1 = 8 c$$
 $5^{(k+1)} = 8 c - 2 \cdot 3^{(k+1)} = 8 c - 2 \cdot 3^{(k+1$

$$= 40 c - 4 * 3 - 4$$

$$= 4 \left(10 c - 3 - 1 \right) = 4 * even$$

$$= 8d$$

$$= 8d$$