1. Let $f: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N} \times \mathbb{N}$ be defined by $f(m, n)=\left(2^{m}, 3^{n}\right)$.
(a) Show that f is 1-1.
(b) Show that f is not onto.
2. Consider the function: $f: \mathbb{R} \rightarrow \mathbb{R}$ where $f(x)=\lfloor x\rfloor$. Check whether or not f is $1-1$.Explain.
3. Let $f: \mathbb{R}-\{1\} \rightarrow \mathbb{R}-\{1\}$ where $f(x)=\frac{x}{1+x}$
(a) Justify why $-1 \notin$ domain of f.
(b) Show that f is 1-1 and onto
(c) Find its inverse
4. Consider the function f_{E}, where $E=$ the set of even integers, that is, $E=\{2 n: n \in \mathbb{Z}\}$.Consider the function $g(x)=1-f_{E}$.
(a) Find $g(n)$.
(b) show that $g(n)$ is the characteristic function of a certain set F. identify F.
5. how that if $a \mid b$ or $a \mid c$ then $a \mid b c$. Show that the converse is not true.
6. Let $m=165, n=275$.
(a) Compute $d=\operatorname{gcd}(m, n)$ using two different ways.
(b) Find $\operatorname{lcm}(m, n)$
(c) DEDUCE that $\operatorname{gcd}(165,275)=\operatorname{gcd}(165,110)$
7. Suppose that $m \equiv n(\bmod 4)$ and $m \equiv n(\bmod 6)$, show $m \equiv n(\bmod 12)$
8. Consider $\sum_{k=1}^{n} k$
(a) Write the formula for $\sum_{k=1}^{n} k$
(b) Evaluate $\sum_{k=1}^{20} k$
(c) Show that $\sum_{k=1}^{n} k=O\left(n^{2}\right)$
