1. Let A, B and C be sets. Who that $(A \oplus B) \oplus C=A \oplus(B \oplus C)$, using any method. (Remember $A \oplus B=\{x$ s.t. $x \in A$ or $x \in B$ but not in both $\}$
2. Let $f: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z}$ be defined by $f(m, n)=2^{m} 3^{n}$.
(a) Is $f 1-1$?
(b) Is f onto?
3. Same question if $f: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R} \times \mathbb{R}$
4. Let \sim be a relation on Z given by $m \sim n$ if and only if $m^{3}=n^{3}$ Show that \sim is an equivalence relation and find the equivalence classes

5 . Fill in the blanks with the appropriate symbols $(\in, \notin$,or $\subset, \nsubseteq)$ in the following cases:
(a) $1 \ldots . .\{1,2,\{1\},\{1,2\}\}$
(b) $\{2\} \ldots, \ldots 1,2,\{1\},\{1,2\}\}$
(c) $\{\{1\}\} \ldots\{1,2,\{1\},\{1,2\}\}$
(d) $\{1,\{2\}\} \ldots\{1,2,\{1\},\{1,2\}\}$
6. Write the negation of the following statements
(a) All students are given a second chance
(b) If we relax, we will perform
(c) If the weather permits and if we are lucky then we will meet in the park
7. Sketch a graph whose adjacency matrix is

$$
\left(\begin{array}{llll}
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 \\
1 & 2 & 0 & 0 \\
3 & 0 & 0 & 1
\end{array}\right)
$$

You can label the vertices with any letter you choose, ex $v_{1}, v_{2}, .$.
8. Write your own relation on the set $\{1,2,3,4,5\}$ that is (Reflexive) and (Anti Symmetric) and (Transitive).Draw its digraph.
9. Write an explicit formula; a for $a_{n}=3 a_{n-1}-2 a_{n-2} ; n \geq 3$, where $a_{1}=5$, and $a_{2}=3$.
10. If $b_{n}=4+b_{n-1}$, for all $n \geq 1$, if $b_{0}=5$,show that $b_{n}=5+4 n$
11. Consider the matrices: $A=\left[\begin{array}{ccc}4 & 5 & -3 \\ 2 & 1 & 4 \\ 3 & 1 & 0\end{array}\right]$ and $B=\left[\begin{array}{ccc}2 & -1 & 1 \\ 0 & 2 & 2 \\ 1 & 0 & 3\end{array}\right]$. Evaluate the following:
(a) $A+B$
(b) $2 A-3 B$
(c) $A \cdot B$
(d) $B . A$
(e) A^{t}
12. Prove by induction that $n\left(n^{2}+5\right)$ is divisible by 6 .
13. A license plate for a car consists of 3 letters followed by 4 digits.
(a) How many possible licence plates are there?
(b) How many are there with no repeated letters and non repeating digits?
14. Partial Order

Define the relation R on the plane by

$$
(x, y) R(w, u) \text { if } x^{2}+y^{2}<w^{2}+u^{2} \text { or }(x, y)=(w, u)
$$

- Show that this relation is a partial order
- Is it a total order?

15. Given any four integers, explain why two of them must be congruent mod 3 .
16. Let A and B be two finite sets with $|A|<|B|$. True or false.

- There is a function mapping A onto B
- There is a function mapping B onto A .
- There is a one to one function from a A to B
- There is a one to one function from B to A

17. True or false

- The set of positive rationals is countable
- The set of all positive real numbers is countable
- The intersection of two countably infinite sets is countably infinite

18. Show that

$$
\sum_{k=0}^{m} a_{k} n^{k}=a_{m} n^{m}+O\left(n^{m-1}\right), \text { if } a_{m} \neq 0
$$

19. Fact1: If R is a relation on a set S, then R is transitive if and only if $R^{2} \subseteq R$.

Fact 2: If M_{R} is the boolean matrix corresponding to R, then the matrix given by the boolean product $M_{R} \odot M_{R}$ corresponds to the composition of the relation with itself i.e. $R \circ R$.

For two boolean matrices of the same size $m \times n, M$ and N, we say that $M \leq N$ if $m_{i j} \leq n_{i j}$ for all $i=1, \cdots m$ and $j=1, \cdots n$.

Fact 3: $R_{1} \subseteq R_{2}$ if and only if $M_{R 1} \leq M_{R 2}$

Use the 3 facts above to show that the relation R on the set $S=\{1,2,3\}$ whose matrix is

$$
M_{R}=\left(\begin{array}{lll}
1 & 0 & 0 \\
1 & 0 & 0 \\
1 & 1 & 0
\end{array}\right)
$$

is transitive (compute a suitable boolean product)

