- 1. Let A, B and C be sets. Who that $(A \oplus B) \oplus C = A \oplus (B \oplus C)$, using any method. (Remember $A \oplus B = \{x \ s.t. \ x \in A \ \text{or} \ x \in B \ \text{but not in both}\}$
- 2. Let $f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ be defined by $f(m, n) = 2^m 3^n$.
 - (a) Is f 1-1?
 - (b) Is f onto?
- 3. Same question if $f: \mathbb{R} \times \mathbb{R} \to \mathbb{R} \times \mathbb{R}$
- 4. Let \sim be a relation on Z given by $m \sim n$ if and only if $m^3 = n^3$ Show that \sim is an equivalence relation and find the equivalence classes
- 5. Fill in the blanks with the appropriate symbols $(\in, \notin, \text{or } \subset, \not\subseteq)$ in the following cases:
 - (a) $1....\{1, 2, \{1\}, \{1, 2\}\}$
 - (b) $\{2\}....\{1,2,\{1\},\{1,2\}\}$
 - (c) $\{\{1\}\}, \{1, 2, \{1\}, \{1, 2\}\}$
 - (d) $\{1, \{2\}\}...\{1, 2, \{1\}, \{1, 2\}\}$
- 6. Write the negation of the following statements
 - (a) All students are given a second chance
 - (b) If we relax, we will perform
 - (c) If the weather permits and if we are lucky then we will meet in the park
- 7. Sketch a graph whose adjacency matrix is

$$\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 \\
1 & 2 & 0 & 0 \\
3 & 0 & 0 & 1
\end{array}\right)$$

You can label the vertices with any letter you choose, ex $v_1, v_2, ...$

- 8. Write your own relation on the set $\{1, 2, 3, 4, 5\}$ that is (Reflexive) and (Anti Symmetric) and (Transitive). Draw its digraph.
- 9. Write an explicit formula; a for $a_n = 3a_{n-1} 2a_{n-2}$; $n \ge 3$, where $a_1 = 5$, and $a_2 = 3$.
- 10. If $b_n = 4 + b_{n-1}$, for all $n \ge 1$, if $b_0 = 5$, show that $b_n = 5 + 4n$
- 11. Consider the matrices: $A=\begin{bmatrix}4&5&-3\\2&1&4\\3&1&0\end{bmatrix}$ and $B=\begin{bmatrix}2&-1&1\\0&2&2\\1&0&3\end{bmatrix}$. Evaluate the following:
 - (a) A + B

- (b) 2A 3B
- (c) A.B
- (d) B.A
- (e) A^t
- 12. Prove by induction that $n(n^2 + 5)$ is divisible by 6.
- 13. A license plate for a car consists of 3 letters followed by 4 digits.
 - (a) How many possible licence plates are there?
 - (b) How many are there with no repeated letters and non repeating digits?
- 14. Partial Order

Define the relation R on the plane by

$$(x,y) R(w,u)$$
 if $x^2 + y^2 < w^2 + u^2$ or $(x,y) = (w,u)$

- Show that this relation is a partial order
- Is it a total order?
- 15. Given any four integers, explain why two of them must be congruent mod 3.
- 16. Let A and B be two finite sets with |A| < |B|. True or false.
 - There is a function mapping A onto B
 - There is a function mapping B onto A.
 - There is a one to one function from a A to B
 - There is a one to one function from B to A
- 17. True or false
 - The set of positive rationals is countable
 - The set of all positive real numbers is countable
 - The intersection of two countably infinite sets is countably infinite
- 18. Show that

$$\sum_{k=0}^{m} a_k n^k = a_m n^m + O(n^{m-1}), \text{ if } a_m \neq 0$$

19. Fact1: If R is a relation on a set S, then R is transitive if and only if $R^2 \subseteq R$.

Fact 2: If M_R is the boolean matrix corresponding to R, then the matrix given by the boolean product $M_R \odot M_R$ corresponds to the composition of the relation with itself i.e. $R \circ R$.

For two boolean matrices of the same size $m \times n$, M and N, we say that $M \leq N$ if $m_{ij} \leq n_{ij}$ for all $i = 1, \dots, m$ and $j = 1, \dots, n$.

Fact 3: $R_1 \subseteq R_2$ if and only if $M_{R1} \leq M_{R2}$

Use the 3 facts above to show that the relation R on the set $S=\{1,2,3\}$ whose matrix is

$$M_R = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \end{array}\right)$$

is transitive (compute a suitable boolean product) $\,$