September 28, 2016 Time: 65 minutes

MATHEMATICS 218

QUIZ I

NAME ID#

Fall 2016-17.

Circle your section number:

Giuseppe Della Sala			Sabine El Khoury			Monique Azar		Monique Azar			Hazar Abu-Khuzam			
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
2 W	1 W	11 W	12 F	4 F	3 F	12 M	1 M	11M	4 M	3 M	11 Th	11 F	4 F	5 F

PROBLEM GRADE

PART I

1 -12/14

2 -14/14

3 16 / 16

4 --- / 8

PART II

5	6	7	8	9	10
(a)	(a)	a	a	a	(a)
b	b	b	b	(D)	b
С	c	c	C	c	c
d	d	Ø	(B)	d	d
e	e	e	e	e	e

5-10 30 / 30

Notes before solving the exam:

- 1) You have to solve the recommended problems in the book after understanding each chapter from the book and the notes.
- 2) If you have any questions or concerns, let us know through our mail: insightclub@gmail.com.

GOOD LUCK:)

PART III

11	12	.13	14	15	16
T	Ø	B	(A)	U	T
· (F)	F	F	F	F	Œ

11-16 17 / 18

TOTAL

98 / 100

<u>PART I</u>. Answer each of the following problems in the space provided for each problem (Problem 1 to Problem 4).

1. Use <u>row echelon form</u> of the following linear system to find the values of a and b for which the system:

$$x +2y - z = 1$$

 $3x +7y - az = 0$
 $-2x - y + z = b$

has

- a. no solution
- b. a unique solution
- c. infinitely many solutions.

augmentel
$$\begin{bmatrix} 1 & 2 & -1 & 1 \\ 3 & 7 & -a & 0 \\ -2 & -1 & 1 & b \end{bmatrix}$$
 $\begin{bmatrix} 2R_1+R_3 \rightarrow R_3 & [14 \text{ points}] \\ -3R_1+R_2 \rightarrow R_2 & [1 & 2 & -1 & 1 \\ 0 & 1 & 3-a & -3 \\ 0 & 3 & -1 & 2+b \end{bmatrix}$

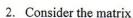
a) The system has no solution when its row edular form is inconsistent, which means -10+3a=0 and $11+b\neq0$ $a=\frac{10}{3}$ and $b\neq11$

b) The system has unique solution when its row echolon form is consistent and the there is no zeros-row

$$\Rightarrow \text{ for } -lo+3a\neq0 \text{ and } ll+b\neq0$$

$$a\neq\frac{3}{10} \text{ and } b\neq-ll$$

c) The system has infinitely many solutions when there is a redundant row of zeros and there is only 2 pivots for $2 \text{ rows} \Rightarrow \text{ for } -10+3a=0$ and $11\pm b=0$ $a=\frac{10}{3}$ and b=-11



$$A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & -1 \\ 1 & 1 & 1 \end{pmatrix}$$

(a) Find A-1

$$\begin{bmatrix} 1 & 0 & 1 & | & 1 & 0 & 0 \\ 0 & 1 & -1 & | & 0 & 1 & 0 \\ 1 & | & 1 & | & 0 & 0 & 1 \end{bmatrix} \xrightarrow{-R_1 + R_2 - sR_3} \begin{bmatrix} 10 & \text{points} \\ 0 & 1 & -1 & | & 0 & 1 \\ 0 & | & 0 & | & -1 & 0 & 1 \end{bmatrix}$$

$$-R_{2}+R_{3}-0R_{3} = \begin{bmatrix} 1 & 0 & 0 & | & 2 & 1 & -1 \\ -R_{2}+R_{1}-0R_{1} & 0 & | & 0 & | & 2 & 1 & -1 \\ 0 & 0 & -1 & | & 1 & | & -1 & | & & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & & -1 & | &$$

(b) Use A⁻¹ from part (a) above to find the solution $X = \begin{bmatrix} x_2 \end{bmatrix}$ to the linear system AX = b,

where
$$\mathbf{b} = \begin{pmatrix} 3 \\ 5 \\ -2 \end{pmatrix}$$
.

$$\begin{bmatrix} -2 \end{bmatrix}$$

$$A^{-1}AX = A^{-1}b$$

$$\Rightarrow X = A^{-1}b = \begin{pmatrix} 2 & 1 & -1 \\ -1 & 0 & 1 \\ -1 & -1 & 1 \end{pmatrix} \begin{pmatrix} 3 \\ 5 \\ -2 \end{pmatrix} = \begin{pmatrix} 13 \\ -5 \\ -10 \end{pmatrix}$$

3

3. Let A be 2×2 matrix such that $A^2+4A+4I=0$

(a) Find A-1 in terms of A and I

the 2×2 matrix such that
$$A^2+4A+4I=0$$

and A^{-1} in terms of A and I

$$A^2+4A+4I=0$$

$$A^2+4A=-4I$$

$$A\left(\frac{A+4I}{-4}\right)=I$$

So, $A = -\frac{1}{4}A - I$ since when multiplied with A it gives the identity T. (b) Suppose that $A = \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}$ such that $A^2 + 4A + 4I = 0$. Find the values of a and b.

$$A^{-1} = -\frac{1}{4}A - I = -\frac{1}{4}\begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} - \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} -\frac{a}{4} - 1 & 0 \\ 0 & -\frac{b}{4} - 1 \end{pmatrix}$$

$$\begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} \begin{pmatrix} -\frac{a}{4} - 1 & 0 \\ 0 & -\frac{b}{4} - 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} -\frac{a^2}{4} - a & 0 \\ 0 & -\frac{b^2}{4} - b \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

So,
$$\frac{a^2}{4}a = 1 \Rightarrow \frac{-a^2}{4}a - 1 = 0 \Rightarrow a = -2$$

 $\frac{-b^2}{4}b = 1 \Rightarrow \frac{-b^2}{4}b - 1 = 0 \Rightarrow b = -2$

4. If A and B are $n \times n$ matrices such that $A^2 = I$, $B^2 = I$, and $(AB)^2 = I$. Prove that AB=BA [8 points]

$$(AB)^2 = I$$
 $ABAB = I$
 $ABABB = IB$
 $ABABB = IB$
 $ABAB^2 = B$
 $ABA = B$
 $ABA = B$
 $ABA = AB$
 $A^2BA = AB$
 $A^2BA = AB$
 $A^2BA = AB$
 $ABA = AB$
 ABA

<u>PART II</u>. Circle the correct answer for each of the following multiple choice problems (Problem 5 to Problem 10) <u>IN THE TABLE IN THE FRONT PAGE</u>. [5 points for each correct answer].

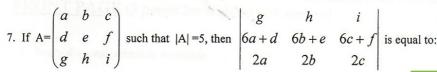
5. Let
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & -1 \end{pmatrix}$$
. Then

- (a) $A^{10} = 1$
- (b) $A^3 = I$ (identity matrix)
- (c) $A^2 = O$ (zero matrix)
- (d) A is not invertible
- (e) none of the above

[5 points]

- 6. Let A be an invertible n×n matrix. Which one of the following statements is FALSE:
 - (a) AB is invertible for any n×n matrix B.
 - (b) The number of nonzero rows in a row echelon form of A is n.
 - (c) At is invertible.
 - (d) $\det(A) \neq 0$.
 - (e) The reduced row echelon form of A is I.

[5 points]



- (a) -60
- (b) -30
- (c) 60
- **(d)** -10
- (e) none of the above

8. Let A be an n×n matrix. Which one of the following statements is FALSE:

- 1,
 - (a) If the reduced row echelon form of A is I, then A is invertible
 - (b) If the reduced row echelon form of A is not I, then det(A)=0
 - (c) If the homogeneous matrix equation AX=0 has only the trivial solution, then A is invertible
 - If A is not invertible, then the matrix equation AX=b has infinitely many solutions for all b.
 - (e) If A is invertible, then the homogeneous matrix equation AX=0 has only the trivial solution

[5 points]

9. The value of the number k for which the matrix

$$A = \begin{pmatrix} 1 & 6 & 3 \\ 1 & k & 1 \\ 0 & k & 2 \end{pmatrix},$$

is not invertible is:

- (a) k = 1
- (b) k= 3
- (c) k=2
- (d) k=0
- (e) none of the above

[5 points]

- 10. Let v_1, v_2, v_3, v_4 , and v_5 be vectors in \mathbb{R}^n such that $v_3 = v_1 + v_2$, and $v_5 = v_3 + v_4$. Which one of the following statements is **FALSE**:
 - (a) v₁ is a linear combination of v₄ and v₅
 - (b) v₂ is a linear combination of v₁ and v₃
 - (c) V₅ is a linear combination of v₁, v₂, and v₄
 - (d) v_3 is a linear combination of v_4 and v_5
 - (e) v_3 is a linear combination of v_1 and v_2

[5 points]

<u>PART III</u>. Answer TRUE or FALSE only, <u>IN THE TABLE IN THE FRONT PAGE</u> (3 points for each correct answer)

- 11. Every diagonal matrix is invertible.
- 12. If A is any square $n \times n$ matrix, then A^tA is symmetric
- 13. If A is a 3×3 matrix such that det $(2A^{-1}) = 4$, then $det(A^{-1}) = 2$
- 14. If A and B are $n \times n$ matrices such that A is invertible and $(A^{-1}B)^t$ is invertible, then B is invertible.
- 15. The vector $\begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix}$ is a linear combination of the vectors $\begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}$ and $\begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix}$
- 16. If A and B are $n\times n$ matrices such that AB=0 and A≠0, then B=0 .

[18 points]

