1. We consider the velocity field $\mathbf{F}=\left(z e^{x}+e^{y}\right) \mathbf{i}+\left(x e^{y}+e^{z}\right) \mathbf{j}+\left(y e^{z}+e^{x}\right) \mathbf{k}$.
(a) Prove the \mathbf{F} is conservative.
(b) Find a potential function for the field \mathbf{F}.
(c) Find the flow of \mathbf{F} over the curve $\mathbf{r}(t)=\ln \left(1+t^{2}\right) \mathbf{i}+\ln (2+t) \mathbf{j}+\ln \left(3+2 t^{2}\right) \mathbf{k}$ from $t=0$ to $t=1$.
2. We denote by V the volume of the region bounded below by the the paraboloid $z=x^{2}+y^{2}$ and above by the sphere $x^{2}+y^{2}+z^{2}=2$.
(a) Express, without evaluating, the volume V as a triple integral using:
i. the rectangular coordinates,
ii. the cylindrical coordinates,
iii. the spherical coordinates.
(b) Find the volume V by evaluating one of the three triple integrals.
3. Find the extreme values of the function $f(x, y, z)=x-y+z$ on the sphere unit sphere $x^{2}+y^{2}+z^{2}=1$.
4. We consider the function $f(x, y)=x^{4}+y^{4}-4(x-y)^{2}$.
(a) Test the function $f(x, y)$ for local maxima and minima and saddle points.
(b) Prove that the point where the test fails in (a) is in fact a saddle point. (Hint: Find $f(x, x)$ and $f(x, 0)$ and conclude.....)
5. Find the integral of $f(x, y, z)=x^{2}-y+z$ over the curve $C=C_{1} \cup C_{2}$ where

- C_{1} is the part of the curve $x^{2}+y^{2}=1$ in the $y \geq 0$ part of the $x y$-plane from $(-1,0,0)$ to $(1,0,0)$
- C_{2} is the line segment in $x z$-plane from $(1,0,0)$ to $(0,0,1)$

6. Find the area of the band cut from the paraboloid $x^{2}+y^{2}-z=0$ by the planes $z=2$ and $z=6$.
7. Bonus question. Find the largest volume of a rectangular box if its surface is known to be 24 .

MARKS : 1. [15
2. [30]
3. [15]
4. [15]
5. [10]
6. [15]
7. [10]

