AMERICAN UNIVERSITY OF BEIRUT Math 218 – Linear Algebra and Applications

EXAM 1 Fall 2014

Name: _____

ID: _____

The backs of the pages may be used as scratch paper. **NO QUESTIONS ARE ALLOWED.** Time: 60 minutes

Circle your section number:

Michella Bou Eid		Hazar Abu Khuzam		Monique Azar			Rana Nassif				
2W	1W	11W	12F	4F	11F	2M	1M	11M	2M	3M	11R
1	2	3	4	5	6	7	8	9	10	11	12

Г

Multiple choice						
6	a	b	с	d	е	
7	a	b	с	d	е	
8	a	b	с	d	е	
9	a	b	с	d	е	

True or False						
10	Т	F				
11	Т	F				
12	Т	F				
13	Т	F				
14	Т	F				
15	Т	F				
16	Т	F				

Question	Points	Score
1	21	
2	10	
3	9	
4	10	
5	9	
6-9	20	
10-16	21	
Total	100	

Exam 1

Part I

Answer each of the following problems in the space provided for each problem.

1. (21 points) For which values of a and b does the system

$$\begin{cases} x + 3y - z = 3\\ 2x + 5y - az = 0\\ 3x + 7y + 2z = b \end{cases}$$

have a

a) no solution,

b) a unique solution,

c) infinitely many solutions?

Math 218

Exam 1

2. (10 points) Let A be an invertible matrix such that $(A^{-1} + I)$ is invertible. Show that $(A + I)^{-1} = (A^{-1} + I)^{-1}A^{-1}$.

3. (9 points) Show that if $A^t A = A$ then A is symmetric and $A = A^2$.

Math 218

$Exam \ 1$

4. (10 points) If A and B are 4×4 matrices with |A| = 2 and |B| = 9, find $|3AB^{-1}A^t|$.

5. (9 points) Let A be an $n \times n$ matrix. Show that if $(2A^2 + 3I)^2 = A + I$ then A is invertible.

Exam 1

Part II

Circle the correct answer to each of the following problems IN THE TABLE ON THE FRONT PAGE. Each correct answer is worth 5 points.

6. Let $A = \begin{bmatrix} 0 & 0 & 1 \\ 2 & 1 & 0 \\ 1 & 2 & 0 \end{bmatrix}$. If B is the inverse of A then the sum of the diagonal entries of B is

- a) -1/3
- b) 4/3
- c) 1
- d) -2
- e) none of the above

- **7.** If A and B are symmetric matrices then
 - a) AB is symmetric
 - b) A + B is symmetric
 - c) AB is invertible
 - d) the diagonal entries of AB are all zero
 - e) none of the above

8. If
$$\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = 1$$
 then $\begin{vmatrix} 3a+2d & 3b+2e & 3c+2f \\ g & h & i \\ d+5g & e+5h & f+5i \end{vmatrix} =$
a) 3
b) -3
c) 15
d) -15
e) none of the above.

9. If
$$\begin{bmatrix} a & b & b & b \\ 0 & b & 1 & c \\ 0 & 0 & c & c \end{bmatrix}$$
 is in row echelon form then we must have
a) $a = b = c = 0$ or $(a = 1 \text{ and } b = c = 0)$
b) $a \in \mathbb{R}$ and $b \neq 0$ and $c \in \mathbb{R}$
c) $a \neq 0$ and $b \in \mathbb{R}$ and $c \in \mathbb{R}$
d) $(a \neq 0 \text{ and } b = c = 0)$ or $(a \neq 0 \text{ and } b \neq 0 \text{ and } c \in \mathbb{R})$
e) a, b, c are all nonzero

Exam 1

Part III

Determine whether each of the following statements is true or false. Circle the correct answer IN THE TABLE ON THE FRONT PAGE. Each correct answer is worth 3 points.

- **10.** If $A^2 = A$ then A = 0 or A = I.
- 11. If A is not invertible then the system Ax = b has infinitely many solutions.
- **12.** If A + B is invertible then A and B are invertible.
- 13. If y and z are solutions of the system Ax = b then any linear combination of y and z is also a solution.
- 14. If the reduced row echelon form of the augmented matrix of a linear system has a row of zeros then the system has infinitely many solutions.

15. The vector
$$\begin{bmatrix} 3\\4\\6 \end{bmatrix}$$
 is a linear combination of $\begin{bmatrix} 1\\0\\0 \end{bmatrix}$ and $\begin{bmatrix} 2\\2\\3 \end{bmatrix}$.
16. If $A = \begin{bmatrix} 3 & 5 & 7 & 0\\1 & -4 & 9 & 1\\9 & 15 & 21 & 0\\1 & -2 & -3 & -4 \end{bmatrix}$ then A^t is not invertible.

Math 218

Exam 1

SCRATCH PAGE — DO NOT TEAR